Primary Energy Spectrum by the Data of EAS Cherenkov Light Arrays Tunka-133 and TAIGA-HiSCORE and Some Other News from Tunka Valley.

Vasily Prosin for the Tunka and TAIGA Collaborations

09.10.2018

History of the EAS Cerenkov light study in the Tunka Valley

Start of the first International Collaboration with leadership of Gianni Navarra and A.M. Hillas.

History of the EAS Cerenkov light study in the Tunka Valley

$$\begin{split} 1998-2000-\text{QUEST} & (5 \text{ PMTs QUASAR-370 at EAS-TOP in LNGS}).\\ 2000-2003-\text{Tunka-25}, \ S=0.1 \text{ km}^2 \text{ in the Tunka Valley}-\\ & \text{Energy range } 8\cdot10^{14}-10^{16}\,\text{eV} \;. \end{split}$$

History of the EAS Cerenkov light study in the Tunka Valley

L. Kuzmichev and G. Navarra in Torino

2004 - 2009 - Tunka-133 - 133 PMTs, from former MACRO experiment in Gran Sasso (idea of Gianni Navarra) Energy range: $6 \cdot 10^{15} - 10^{18}$ eV

TAIGA - collaboration

Germany

Hamburg University (Hamburg) DESY (Zeuthen) MPI (Munich)

Italy Torino University (Torino)

Romania ISS (Bucharest)

Russia

SINP MSU (Moscow) API ISU (Irkutsk) INR RAS (Moscow) JINR (Dubna) MEPHI (Moscow) IZMIRAN (Moscow) NSU (Novosibirsk) BINR SB RAS (Novosibirsk)

The TAIGA experiment - a hybrid detector for very High energy gamma-ray astronomy and cosmic ray physics in the Tunka valley

TAIGA = **Tunka Advanced Instrument for cosmic rays and Gamma Astronomy The main idea** of large array of low threshold Air Cherenkov stations (the *non-imaging technique*) with some Imaging Air Cherenkov Telescopes.

Low threshold wide angle station

Digitized with DRS-4. Step = 0.5 ns Synchronization and data taking via optical cable

Winston cone and PMT with 20 cm photocathode diameter

S tot = 0.5 m^2

Camera : 560 PMTs (XP 1911) with 15 mm useful diameter of photocathode Winston cone: 30 mm input size, 15 mm output size aperture single pixel = 0.36° FOV diameter ~ 9.6°

Energy threshold ~1.5 TeV

History of the EAS Cerenkov light study in the Tunka Valley

2014 – TAIGA-HiSCORE (High Sensitivity Cosmic Ray Explorer) – 9 stations

2016 - 2017

stations

45 stations

EAS Cherenkov Arrays Data Processing and Results

Tunka-133 single detector readout: Fitting of the pulse and measuring of the parameters: $Q=c \cdot S_{pulse}$, A_{max} , t_i , $\tau_{eff}=S/A/1.24$

HiSCORE station sum record 2017-2018

EAS parameters reconstruction

CORSIKA: Fitting functions – LDF and ADF

ADF: $A(R) = A(400) \cdot ((R/400+1)/2)^{-bA}$ steepness: b_A LDF: $Q(R) = Q(300) \cdot ((R/300+1)/2)^{-bQ}$ steepness: b_Q $b_A > b_O$

An Example of Tunka-133 event reconstruction

An Example of TAIGA-HiSCORE event reconstruction

EAS parameters reconstruction by Cherenkov light flux density Q₂₀₀

Fitting of pulse amplitudes (A_i) with ADF. Getting of X₀, Y₀ and ADF steepness (b_A). Getting Q₂₀₀ with LDF

$$E_0 = C \cdot Q_{200}^{0.94}$$

EAS parameters reconstruction by Q_{70}

For energy $E_0 < 10^{15} \text{ eV}$:

 X_0, Y_0 is the gravity center of A_i for 4 stations, closest to the core.

Experimental correlations are obtained for the energy range 10¹⁵ – 3·10¹⁵ eV :

$$Q_{70} = Q_{gc} \cdot 1.06(sec(\theta) - 1)$$

 Q_{gc} is mean value by these 4 stations

Minimal event configuration:

 $E_0 = C \cdot Q_{70}^{0.88}$:

HiSCORE Effective Area

fitted events $E_0 > 10^{15} \text{ eV}$

gravity center events $E_0 < 10^{15} \text{ eV}$

EXPERIMENTAL DATA

Tunka-133:

- 7 seasons, 350 nights, 2175 h, ~1.5·107 single cluster events
- 100% effective registration:
- ~375,000 events with $E_0 > 6 \cdot 10^{15} \text{ eV}$,
- ~4,200 events with $E_0 > 10^{17} \text{ eV}$

TAIGA-HiSCORE:

season 2017-2018, 35 nights, 180 h, $\sim 3.10^8$ single station events 100% effective registration:

- $2 \cdot 10^{14} 3 \cdot 10^{14}$
- $3 \cdot 10^{14} 10^{15}$

 $10^{15} - 10^{17}$

- ~29,000 (one night 28.10.2018, Q_{70}) ~700,000 (35 nights, Q_{70})
- ~170,000 (35 nights, Q₂₀₀)

Tunka Primary Energy Spectra with EAS Cerenkov Light

Tunka-133: 350 clean moonless nights 2175 h ~375,000 events With ~100% efficiency ~4200 events with $E_0>10^{17}$ eV

TAIGA-HiSCORE: 35 clean moonless nights 180 h ~900,000 events with ~100% efficiency

Energy spectrum: power law fitting

Energy spectrum comparison with intermediate enery experiments

United Primary Energy Spectrum $10^{13} - 10^{20} \text{ eV}$

Perspectives of Mass Composition Study

10¹⁴ – 10¹⁵ eV IACT image analysis

 $10^{15} - 10^{18}$ eV Cerenkov light ADF steepness b_A Cerenkov light pulse width at R_{core}= 300 - 400 m

IACT and HiSCORE joint events

"Hadron-like" event

Energy from HiSCORE: 840 TeV

CORSIKA

(Correlations are model, energy, zenith angle and composition independent)

 ΔX_{max} vs. b_A (ADF steepness)

 ΔX_{max} vs. $\tau_{\text{eff}}(400)$

<X_{max}> vs. E₀ Tunka-133 results of 2017

? – because of the works: ATIC-2, ARGO, HAWC The new analysis of the TAIGA-HiSCORE data is needed.

Perspectives of Mass Composition Study

Tunka-Grande data

for the energy range $10^{17} - 10^{18} \text{ eV}$ Composition sensitive parameter:

$$\begin{split} S &= log_{10}(\rho_{\mu}(200) - C \cdot log_{10}(\rho_{sc}(200) \\ \rho_{\mu} \text{ muon density} \\ \rho_{sc} \text{ all particle density} \end{split}$$

C ~ 0.9

< □ > < 🗗 >

Connection of 2 antennas to 2 free channels of FADC

38 antennas are situated at the area of 1 km^2 now.

Plan for 2018-19

For 100 hours

3.10⁵ hybrid events (CR mass composition)

50-100 hybrid events from Crab (E ≥.40 TeV)

Mirrors and camera In April 2019

Long term plan for TAIGA

• 1000 wide angle optical station on the 10 km² area, energy

threshold 30 TeV.

 $(10 \text{ m}^2 \text{ mirrors}).$

•Muon detectors with total area 3.0 10³ m².

Conclusions

- 1. United primary energy spectrum, obtained by the same method of EAS Chernkov light flux measurement cover 4 orders of magnitude and let us confirm that the primary energy measurements are in good agreement from relatively low (10^{13} eV) to extremely high energy (10_{20} eV)
- 2. Deployment of the full scale TAIGA prototype 120 wide-angle stations and three IACTs is planned for 2019.
- 3. The results from joint operation of HiSCORE and IACT we hope will let us estimate the primary mass composition for the energy around 10^{15} eV

Thank you!

ADF:

1. $A(R) = A_{kn} \cdot exp((R_{kn}-R) \cdot (1+3/(R+2))/R_0)$ 2. $A(R) = A_{kn} \cdot (R_{kn}/R)^c$ 3. $A(R) = A(400) \cdot ((R/400+a)/(a+1))^{-b}$ 4. $A(R) = A(400) \cdot ((R/400+1)/2)^{-b}$

- All four variables (\mathbf{R}_0 , $\mathbf{R}_{\mathbf{kn}}$, **a** and **c**), describing the ADF shape in the different ranges of core
- Distance, are related to a single parameter of the ADF shape
- the steepness **b**.

