AugerPrime

The Pierre Auger Observatory Upgrade

Antonella Castellina*, for the Pierre Auger Collaboration
*INAF/OATo & INFN, Torino, Italy

UHECR2018, Paris, 8-12 October 2018

Prologue

- a wealth of information collected at the Pierre Auger Observatory: a complex astrophysical scenario
- need for key additional measurements

The AugerPrime science case

- study the <u>origin of the suppression</u>
- select light primaries for <u>charged particle astronomy</u>
- \bigcirc provide better estimates of the neutrino and γ flux, as such establishing the potential of future CR experiments
- Setter measure the shower components and so study the <u>hadronic interactions at UHE and</u> look for non standard physics

Extend operations to 2025, increasing the statistics

Improve the sensitivity to the composition at UHE : disentagle the electromagnetic and muonic components

Composition sensitivity

components of extensive air showers

r [m]

Discrimination of astrophysical scenarios

Simplified benchmark scenarios :

 $\left[{{\rm{max}}\atop{\rm{max}}} \right] \left[{{\rm{g/cm}}\atop{\rm{g}}^2} \right] {{\rm{g}}/{\rm{cm}}_2}$

760

740

720

700

19

19.2

p, EPOS-LHC

Fe, EPOS-LHC

Sensitivity to proton fraction

Significance of distinguishing two different realisations of Scenario 1 (maximum rigidity model) :

- as it predicts, i.e. no protons at UHE
- adding 10% protons

For the combined significance

$$\sigma^{2} = \sigma^{2}(\langle X_{\max} \rangle) + \sigma^{2}(RMS(X_{\max})) + \sigma^{2}(\langle R_{\mu,38} \rangle) + \sigma^{2}(RMS(R_{\mu,38}))$$

 $>5\sigma$ in 5 years of operations

Composition-driven anisotropy search

Source correlation study (no specific assumptions)

Specific source (AGN from Swift-BAT <100 Mpc) correlation study

Information on neutrinos and photons

Expected improvements

- increase in exposure
- largely improved discrimination power:
 - new triggers lowering the trigger thresholds
 - new electronics
 - better muon component evaluation, as such better photon/hadron and neutrino/hadron discrimination

Particle physics

Kinematic regions not reachable by accelerators

Tests of fundamental interactions in extreme energy regimes

Tests of hadronic interaction models

 $E = 10^{17} - 10^{20} \text{ eV}$ $\sqrt{s} \approx 14 - 450 \text{ TeV}$

AugerPrime

a large exposure detector with composition sensitivity above $\sim 4 \ 10^{19} \text{ eV}$

EM+µ

Surface Scintillator Detectors (SSD)

- to improve the separation power for the different components of the shower
- 3.8 m² above each WCD, 1 cm thick, read-out by WLS fibers

Water Cherenkov Station (WCD) ----- New Upgraded Electronics (UUB)

• to acquire WCD+SSD+SPMT

120 MHz, better GPS timing

- Small PMT (SPMT)
 - to increase the dynamic range of the measurement in the WCD
 - one small PMT in each WCD

Direct Muon Detector (AMIGA)

- to directly measure the muon component
- scintillators+WLS fibers, 2.3 m underground aside the Infill WCD (23.4 km²)

Extension of the Fluorescence Detector duty cycle

• 50% increase by lowering the PMT HV

Radio antennas (next talk)

The Surface Scintillator Detector

shower components

SSD Performances

Muon telescope (from Kascade experiment)

- attenuation lenght of the light in fibers
 λ=310+3 cm
- uniformity **better than <u>+</u>5%**

λ = ~310 cm

1.0

1.5

2.0

y[m]

2.5

3.0

3.5

650

600

550

500

450

0.5

charge [adc]

• 30<u>+</u>2 p.e./vMIP [<37 p.e./MIP>]

The SD Upgraded Electronics

Increase in data quality

- 6 → 10 ADC channels to process signals from WCD and SSD
 - > 2x3 WCD-LPMTs, 2x1 SSD-PMT, 1 WCD-SPMT
- faster sampling : 40 → 120 MHz
- better timing accuracy
- increased dynamic range

Faster data processing and enhanced local triggers

• more powerful processor and FPGA

Improved calibration and monitoring capabilities

- >90 monitoring variables managed by slow-control
- low gain to high gain calibration purely electronic (both for WCD and SSD)

Hamamatsu

R8619, 1" Ø

XP1805 Photonis, 9" Ø

Hamamatsu R9420, 1.5″ ∅

Extending the dynamic range

Extra small PMT in the WCD (1" \varnothing)

- x32 dynamic range : ~20000 VEM
- P(≥1 saturated SD) ~0 at all energies
- signals measured **as close as 250 m** from the core
- easy installation (no mechanical modification of SD tanks)
- dedicated input in the UUB
- comparable dynamic range in WCD and in SSD

SPMT Performances

Intercalibration (in local stations)

$$S_{LPMT} = \beta S_{SPMT} + Q_0$$

- accuracy of intercalibration technique within 2.2%
- calibration accuracy within 10% above superposition region
- procedure feasible every 6 hours

Underground Muon Detector

- 61 detectors in the Infill area (23.5 km² in a 750 m grid)
- 4 modules/WCD (~30 m²), 2.25 m underground, triggered by the surface detectors
- direct measurement of the muon content and its time structure in showers with $E{\approx}10^{17.5}\ eV$
- muon energy threshold ~600 MeV/cos ϑ_{μ}
- cross-check of the SSD-WCD combined analysis

Extend the FD duty cycle

- current criteria for FD measurements
 - 1.Sun >18° below horizon
 - 2. Moon below horizon for > 3 hours
 - 3. illuminated fraction of Moon <70%
- extension by relaxing 2 and 3
 - x10 reduction of PMT gain by reducing the supplied HV
 - uptime increased by 50%

Duty cycle 15%

[deg] 30 elevation 25 20 15 10 5 120 115 110 105 100 95 azimuth [deg] χ²/Ndf= 291.4/318

600

800

1000

1200

slant depth [g/cm²]

400

Clear sky, no moonlight

40 times higher NSB (90% moon)

- procedure successfully tested
- existing measured showers reanalysed with standard reconstruction when random noise is added to the FADC traces

The Engineering Array

Data from the Engineering Array

Data from the Engineering Array

Conclusion

Main aims of the upgrade

Origin of flux suppression and composition in the extreme energy region. Evaluation of the proton contribution above ~6 10¹⁹ eV for charged particle astronomy Test of hadronic interactions and search for non standard particle physics at EHE

AugerPrime can address these open questions

- April 2016: upgrade approved by funding Agencies
- Autumn 2016: Engineering Array taking data
- Autumn 2017: definition of final detectors and start of construction
- currently:
 - >150 SSD detections ready in Malargüe: deployment starting
 - pre-production UUB on test in the field
 - >200 SPMTs ready
- full deployment foreseen end of 2019
- 2020-2025 : Data taking (up to 40000 km² sr yr)

Backup slides

Full efficiency SD1500 : >3 10¹⁸ eV SD750 >3 10¹⁷ eV

85% coverage of the celestial sphere

SD

SD annual exposure, $\theta < 60^{\circ}$

T3 rate

T5 events/yr, E > 3 EeV T5 events/yr, E > 10 EeV Reconstruction accuracy (S_{1000}) Angular resolution

Energy resolution

FD

On-time Rate per building Rate per HEAT

Hybrid

Core resolution Angular resolution Energy resolution (FD) X_{max} resolution

$\sim\!5500~km^2\,sr\,yr$

0.1 Hz ~14,500 ~1500 22% (low *E*) to 12% (high *E*) 1.6° (3 stations) 0.9° (> 5 stations) 16% (low *E*) to 12% (high *E*)

~15% 0.012 Hz 0.026 Hz

 $< 20 \text{ g/cm}^2$

50 m 0.6°

8%

Auger Anisotropy ICRC17: 9.0×10⁴ km² sr yr

Auger Spectrum ICRC17: $6.7 imes 10^4$ km² sr yr

TA Spectrum ICRC17: 0.8×10^4 km² sr yr

AGASA

Combined fit

Pierre Auger Coll., JCAP04 (2017) 038

AugerPrime

$\log_{10}(E/eV)$	$\left. \mathrm{d}N/\mathrm{d}t \right _{\mathrm{infill}}$	$dN/dt _{SD}$	$N _{infill}$	$N _{\mathbf{SD}}$
	$[yr^{-1}]$	$[yr^{-1}]$	[2018-2024]	[2018-2024]
17.5	11500	-	80700	-
18.0	900	-	6400	-
18.5	80	12000	530	83200
19.0	8	1500	50	10200
19.5	~ 1	100	7	700
19.8	-	9	-	60
20.0	-	~ 1	-	${\sim}9$

Unsaturated stations

Measuring the muon content - 1

Matrix Inversion Method

Figure of merit

$$S_{\mathrm{p,Fe}} = \frac{|\langle S_{\mathrm{Fe}} \rangle - \langle S_{\mathrm{p}} \rangle|}{\sqrt{\sigma(S_{\mathrm{Fe}})^2 + \sigma(S_{\mathrm{p}})^2}}$$

 $f_{\rm p,Fe} \sim 1.5$

Measuring the muon content - 2

Universality Method

$$\begin{split} S_{\text{tot}} &= S_{\text{em}}(r, DX, E) \\ &+ N_{\mu}^{\text{rel}} \left[S_{\mu}^{\text{ref}}(r, DX, E) + S_{\text{em}}^{\mu}(r, DX, E) \right] \\ &+ (N_{\mu}^{\text{rel}})^{\alpha} S_{\text{em}}^{\text{low-energy}}(r, DX, E) \end{split}$$

- the temporal structure of signals
- the integrated signal

SSD Production

SPMT Production

