Impact of LHC data on UHECR physics

UHECR 2018 Paris, 8th–12th October 2018

David d'Enterria CERN

Mostly based on: D. d'E, Engel, Pierog, Ostapchenko, Werner, Astropart. Phys. 35 (2011) 98 D. d'E, T. Pierog, G. Sun, arXiv:1809.06406

Ultra High Energy Cosmic-Rays via EAS

CR energy & identity for E_{CR}=10¹⁵–10²¹ eV determined using earth atmosphere as a "calorimeter" & comparing shower to hadronic MCs:

UHECR-2018, Paris, Oct.'18

Hadronic Monte Carlos for UHECR

Primary hadronic collisions (p-p, p-A) = Complex QCD interactions:

Hadronic Monte Carlos for LHC collisions

Proton-proton collisions in PYTHIA, HERWIG,...

Theoretical basis:

- Perturbative QCD (LO + K-factor): PDFs, matrix-elements.
- Leading-log parton shower.
- Multiparton interactions.
- Saturation-based infrared $p_{\scriptscriptstyle T}$ cut-off

Non-pQCD modeling:

- String fragmentation (Lund model).
- Beam-remnants.
- Diffraction.
 - Model parameters:
 - O(100) parameters
 - Multiples tunes to many collider measurements.

No p-A, A-A available (yet). But PYTHIA comparable to EPOS/QGSJET via:

- Constructing a CONEX hydrogen atmosphere with same density as air.
- Running PYTHIA-6 proton-hydrogen with varying MC tunes to LHC data.

Hadronic MCs tuning with (pre-LHC) collider data

Hadronic MCs tuning with LHC data

constraints for hadronic Monte Carlos for UHECR

UHECR-2018, Paris, Oct.'18

Key MC parameters for EAS development

Average shower max. depth (X_{max}) & its fluctuations (RMS-X_{max}) are key observables to determine primary CR energy & identity (p, Fe)
 Chiefly depend on the p-p inel. cross section, multiplicity, elasticity in the MC:

UHECR-2018, Paris, Oct.'18

7/34

David d'Enterria (CERN)

LHC experiments: (p_{T},η) acceptance

Particle production in p-p, p-A, A-A up to $\Delta \eta \sim 2 \times \ln(\sqrt{s})/m_n \sim 20$ units

Dedicated detectors at forward rapidities: TOTEM,LHCf,Alfa,CASTOR...

All phase-space virtually covered: 1st time in a collider !

Cosmic-ray MCs (pre-LHC) vs. LHC data

Hadronic inelastic cross-section

Forward particle production

Hadron multiplicity

Average transverse momentum

9/34

Cosmic-ray MCs vs. LHC data (I)

multiplicity o 001

0

Hadronic inelastic cross-section

Forward particle production

Hadron multiplicity

| η| < **2.5**

10²

10

10

p+p

UHECR-2018, Paris, Oct.'18

David d'Enterria (CERN)

energy (GeV)

Total & (in)elastic p-p cross sections (pre-LHC)

- Non-computable from QCD Lagrangian (maybe lattice?), but constrained by fundamental QM relations: Froisart bound, optical theorem, dispersion relations.
- LHC p-p total x-section predictions: $\sigma_{tot}(LHC) = 90-120 \text{ mb } +10 -20 \%.$

p-Air x-sections even more uncertain (Glauber model):

Total & (in)elastic p-p cross sections (LHC)

■ Many measurements (TOTEM, ALFA, CMS, ATLAS, ALICE, LHCb): At $\sqrt{s}=13$ TeV: $\sigma_{tot} = 110.6 \pm 3.4$ mb ($\sigma_{inel} \sim 72\%$, $\sigma_{el} \sim 28\%$).

Most MCs over- (under)estimate high- (low-)mass diffraction.

UHECR-2018, Paris, Oct.'18

Inelastic p-p, p-Pb cross sections (LHC)

All retuned MCs predictions are now ~consistent up to GZK cutoff.

- Measured $\sigma(p-Pb)$ at 5.16 TeV confirms Glauber-scaling of $\sigma(p-p)$ to $\sigma(p-Air)$
- Measured $\sigma(p-p)$ at LHC, slightly below pre-LHC MC predictions, leads to reduced $\sigma(p-Air)$: Deeper shower X_{max} position.

UHECR-2018, Paris, Oct.'18

Cosmic-ray MCs vs. LHC data (II)

Hadronic inelastic cross-section

Forward particle production

Hadron multiplicity

Average transverse momentum

UHECR-2018, Paris, Oct.'18

David d'Enterria (CERN)

Particle production from multi-gluon collisions

Most (~70%) of hadrons from gluon fragmentation in multiple low-x scatterings

Steeply rising (x^{-0.3}) gluon density: At GZK multi g-g collisions at x<10⁻⁵

David d'Enterria (CERN)

Central particle production: Data vs. pre-LHC MCs

[Dd'E et al., Astr.Phys. 35 (2011) 98]

First LHC pseudorapidity distributions data vs. CR models:

900-GeV data well reproduced (MCs were tuned to SppS, Tevatron).

Particle multiplicity less well predicted at 7.0 TeV but all CR models "bracket" the experimental distributions.

Central particle production: Data vs. pre-LHC MCs

[Dd'E et al., Astr.Phys. 35 (2011) 98]

- Power-law s^{ϵ} , $\epsilon \sim 0.1$ controlled by soft-hard p_{τ} -cutoff (sat. scale) evolution
- Very large differences predicted at $\sqrt{s_{gZK}} \sim 400 \text{ TeV}$!

QGSJET-II (~40) > QGSJET01 (~20) > SIBYLL 2.1,EPOS 1.99 (~8)

on these (and other) data. $dN_{ch}/d\eta \sim 15\pm 5$ at GZK now.

UHECR-2018, Paris, Oct.'18

Central particle production: Data vs. post-LHC MCs

Charged particle pseudorapidity density & multiplicity distributions:

UHECR-2018, Paris, Oct.'18

David d'Enterria (CERN)

Central particle production: Data vs. MCs

Central charged particle multiplicity vs. CR energy:

UHECR-2018, Paris, Oct.'18

Cosmic-ray MCs vs. LHC data (III)

multiplicity o

20

Hadronic inelastic cross-section

Forward particle production

Hadron multiplicity

10

10

10

enerav (GeV)

10

 $|\eta| < 2.5$

p+p

UHECR-2018, Paris, Oct.'18

David d'Enterria (CERN)

Very forward particle production

- The inelasticity K=1-E_{lead} /E_{CR} (fraction of primary particle energy transferred to secondary particles after removing the most energetic "leading" hadron emitted at very forward rapidities) has an important influence on cosmic-ray EAS development.
- EPOS, QGSJET have an increased inelasticity with increasing CR energy, but SIBYLL (and PYTHIA) show a flatter behaviour:

Forward particle production: $|\eta| \sim 5.-7$.

Forward energy flow in pp at LHC moderately controlled theoretically (but CR MCs better than collider MCs).

Sensitive to multiparton interactions and beam-remnants.

Some forward particle retuning needed by all MCs.

Very forward photons (LHCf): $|\eta| \sim 8.-11$.

■ Leading baryon (inelasticity) & had-to-e.m. energy transfer ($\pi^0 \rightarrow \gamma \gamma$) moderately controlled theoretically (but CR MCs better than collider MCs).

Some forward particle retuning needed by all MCs.

UHECR-2018, Paris, Oct.'18

David d'Enterria (CERN)

Cosmic-ray MCs vs. LHC data (IV)

Hadronic inelastic cross-section

Forward particle production

Hadron multiplicity

Average transverse momentum

Mean p_{τ} driven by minijet saturation dynamics

Low-x gluons start to overlap at "saturation scale" Q_{sat}

UHECR-2018, Paris, Oct.'18

pQCD minijet x-section peaks at running $p_T \sim Q_{sat} \sim s^{0.15} \sim 1-4 \text{ GeV}$

Mean p_{τ} vs. energy: Data vs. pre-LHC MCs

[Dd'E et al., Astr.Phys. 35 (2011) 98]

■ $< p_T >$ is sensitive to pQCD x-sections & gluon-saturation ■ $< p_T >$ should follow the saturation scale evolution: $Q_{sat} \sim s^{0.15}$

CRs MCs predict very slow <p_T> increase (but EPOS, due to collective flow)
 At GZK: <p_T> ~ 0.6−1.0 GeV (PYTHIA: <p_T> ~ 0.7−1.5 GeV)

Transverse momentum spectra: Data vs. MCs

In general, CR MCs have softer tails than data & pQCD-based MCs (PYTHIA).

EPOS with final-state collective flow reaches good agreement with density-dependent <p_> activity.

UHECR-2018, Paris, Oct.'18

Mean p_{τ} vs. energy: Data vs. MCs

Average transverse momentum vs. collision energy:

Impact on UHECR after LHC MC retuning

UHECR-2018, Paris, Oct.'18

David d'Enterria (CERN)

Impact on UHECR after LHC MC retuning

UHECR-2018, Paris, Oct.'18

David d'Enterria (CERN)

30/34

Solving the "muon anomaly" with a collider MC?

UHECR show μ excess (esp. at large axis distance) than predicted by MC:

Due to missing pQCD processes? Hard $\pi, k \rightarrow \mu$ or $D, B \rightarrow \mu$ decays?

Impact of heavy-Q & pQCD minijet production on the μ excess studied with PYTHIA-6 (tuned to LHC data) in proton-H CONEX atmosphere.

PYTHIA 6.428 Perugia tune	PDF	Q_0 cutoff at	Q_0 scaling	ISR/FSR scale	Hadronization
PYTUNES number (main features)		$\sqrt{s_0} = 7 { m TeV}$	power ϵ	$lpha_{ m s}(k \cdot p_{_{ m T}})$	
350 (central tune 2011)	CTEQ5L1	$2.93~{ m GeV}$	0.265	k = 1	$sar{s},\eta,\eta^\prime ext{ suppr.}=95{,}63{,}12\%$
350, noHQ (central 2011; no c-,b-quarks)	CTEQ5L1	$2.93~{ m GeV}$	0.265	k = 1	$sar{s},\eta,\eta^\prime ext{ suppr.}=95{,}63{,}12\%$
371 (var. 2012, high rad.)	CTEQ6L1	$2.72~{ m GeV}$	0.25	k = 1/2	$s\bar{s}, \eta, \eta'$ suppr. = 92,70,13.5%; softer baryons
372 (var. 2012, low rad.)	CTEQ6L1	$2.60~{ m GeV}$	0.23	k=2	$s\bar{s}, \eta, \eta'$ suppr. = 92,70,13.5%; softer baryons
380 (var. 2012, gg only at low- $p_{\rm T}$)	CTEQ6L1	$2.65~{ m GeV}$	0.245	k = 1	$s\bar{s}, \eta, \eta'$ suppr. = 92,70,13.5%; softer baryons
381 (var. 2012, higher UE)	CTEQ6L1	$2.46~{ m GeV}$	0.23	k = 1	$s\bar{s}, \eta, \eta'$ suppr. = 92,70,13.5%; softer baryons
382 (var. 2012, lower UE)	CTEQ6L1	$2.92~{ m GeV}$	0.26	k = 1	$s\bar{s},\eta,\eta'$ suppr. = 92,70,13.5%; softer baryons

UHECR-2018, Paris, Oct.'18

David d'Enterria (CERN)

Proton EAS properties: PYTHIA-6 vs. UHECR MCs

PYTHIA-6 tuned to LHC data shows similar EAS as std. UHECR MCs

[Dd'E,Pierog,Sun, arXiv:1809.06406 [astro-ph.HE]]

Proton EAS properties: PYTHIA-6 vs. UHECR MCs

PYTHIA-6 tuned to LHC data shows similar EAS as std. UHECR MCs

PYTHIA-6 (esp. without heavy-Q) produces more μ's (and at larger axis distances) than UHECR MCs. But EPOS–QGSJET p-H, p-Air diffs. point to nuclear effects

Summary: UHECR MCs vs. LHC data

Reasonable agreement of all pre-LHC MCs and Run-1 LHC. They "bracket" data, though no model reproduced consistently all results:

	Model	SIBYLL 2.1			qgsjet01			QGSJETII			EPOS 1.99		
	\sqrt{s} (TeV)	0.9	2.36	7	0.9	2.36	7	0.9	2.36	7	0.9	2.36	7
σ_{inel}		\checkmark	Î	Î	\checkmark	\checkmark	\checkmark	\checkmark	↑	Î	\checkmark	\checkmark	\checkmark
$dN_{ch}/d\eta _{\eta=0}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√	\checkmark	Î	\checkmark	\downarrow	\downarrow
$P(N_{ch} < 5)$		介	①	介	≙	介	\downarrow	≙	①	Î	\checkmark	\checkmark	\checkmark
$P(N_{ch} > 30)$		介	\checkmark	介	\checkmark	\downarrow	\downarrow	√	\checkmark	Î	↓↓	\downarrow	\downarrow
$\langle p_{\perp} \rangle$		\checkmark	\downarrow	\downarrow	①	Î	\checkmark	介	Î		\checkmark	\checkmark	\checkmark

- No significant change of multiparticle production at the LHC (~10¹⁶ eV): "CR knee" at ~10^{15.5} eV not due to new (unobserved) particles.
- EPOS-LHC, QGSJET-II-4, SIBYLL2.3 updates: Retuning of diffraction, multiparton colls., saturation, proton-nucleus effects (based on p-Pb at 5 TeV, 2015). Improved reproduction of newest LHC data.
- Still further improvements needed in:
 - Very forward particle production.
 - Semi-hard MPIs. Perturbative QCD dynamics (harder minijets).
- Solution of UHECR μ deficit requires pQCD minijet + nuclear effects combined (not missing heavy-quark production). Enough or new physics? UHECR-2018, Paris, Oct.'18

Backup slides

High-energy proton-proton collisions

Hadrons are extended composite objects: even at asymptotically large c.m. energies, only ~60% of x-section is "computable" within pQCD

pQCD (~60 mb) + diffractive (~15mb) + elastic (~25 mb) ~ 100 mb at the LHC.

UHECR at GZK-cutoff: p or Fe-ions ? (pre-LHC)

Auger: PRL 104 (2010) 091101

Auger shower-max position & fluctuations favour heavy-ions for >10¹⁹ eV

Impact of LHC data on UHE CRs (Auger)

Fluctuations of shower max:

UHECR-2018, Paris, Oct.'18

David d'Enterria (CERN)

Total & elastic p-p cross sections

Non-computable from QCD Lagrangian, but constrained by fundamental QM relations: Froisart bound, optical theorem, dispersion relations.

R.Ulrich, eConf C0906083 (2009)

LHC low multiplicity probabilities

Models ~OK with average multiplicity/event, may miss the event-byevent multiplicity probability at low N_{ch} in the data:

Improvement of diffractive interactions needed.

LHC large multiplicity probabilities

Models ~OK with average multiplicity/event, may miss the event-byevent multiplicity probability at high N_{ch} in the data:

Improvement of multi-parton interactions modeling needed.

UHECRs energy & identification

[Blumer-Engel-Horandel, PPNP 68(2009)293]

Depth: $\gamma > p > A$

X_{max}(p)~X_{max}(Fe)+150 g/cm² Shower-to-shower fluctuations: smaller for ions than proton.

Number of e[±] & muons:

v 10¹⁵ eV

10⁶

David d'Enterria (CERN)

electron number

10¹⁴ eV

104

Fe

10

103

Examples of implications for EAS

Reduced dN/dη (esp. fwd):

Less penetration: lower X_{max} (~ -30 g/cm²)

> Drescher, Dumitru, Strikman PRL 94 (2005) 231801

Reduced charm cross sections:

Machado&Goncalves JHEP0704 (2007) 028

