

Overview of the Auger@TA project and preliminary results from Phase I

Fred Sarazin on behalf of the Auger-TA Working Group on SD cross-calibration ("Auger@TA")

OBSERVATORY

1

Fred Sarazin (fsarazin@mines.edu) Physics Department, Colorado School of Mines

Motivation

- Auger and TA spectra can be reconciled around the ankle by scaling the energy by 10.4%. However, disagreement around the flux suppression is apparent.
- What are the sources of the discrepancy?
 - Difference between the northern and southern UHECR skies?
 - Unknown detector and/or reconstruction biases?
- Auger@TA joint experimental effort aims at examining the latter hypothesis through two phases.
 - Phase I: perform station-level comparisons
 - Phase II: perform event-level comparisons

From: D.Ivanov, ICRC 2017, PoS 498 Auger and TA WG on spectrum

 \bigcirc

AUGER@TA – Phase I

Station-level comparisons of a group of Auger and TA SD stations

Fred Sarazin (fsarazin@mines.edu) Physics Department, Colorado School of Mines

Auger@TA setup at the TA Central Laser Facility (CLF)?

• Two TA SD stations:

- One connected wirelessly to the TA global trigger (but not part of the TA trigger)
- One connected through cables to the Auger@TA electronics to form a local trigger with the Auger SD stations
- Two Auger SD stations:
 - One standard 3-PMT station (also equipped with a mechanical prototype of the Auger Upgrade scintillator detector)
 - One prototype 1-PMT station (aka "Auger North")

Auger@TA triggers at the TA CLF site

- Gray data points: signals measured in colocated TA and Auger stations at the TA CLF, when a time coincidence is established with the TA global trigger
- Black data points: additional condition on TA spectrum quality cut (i.e. well reconstructed showers)
- Expected slope consistent with simulations (ICRC 2017, PoS 395)
- Orthogonal Distance Square (ODS) fit: $S(TA)_{MIP} = (0.42 \pm 0.05)S(Auger)_{VEM}^{1.09\pm0.03}$

[Note: Signals not corrected for (slight) difference of location between Auger / TA SD stations]

Fred Sarazin (fsarazin@mines.edu) Physics Department, Colorado School of Mines

TA SD participating stations	Auger@TA – Phase I	Auger SD single station data
------------------------------	--------------------	------------------------------

UHECR 2018, Paris (France), Oct 8-12, 2018

7

UHECR 2018, Paris (France), Oct 8-12, 2018

7

DATA COLLECTION PARAMETERS:

- TA global L2 trigger list provided to Auger SBC
- T3 request sent to Auger / reads out everything within 100µs of L2 trigger
- Requests for TA data bundled quarterly
- TA data (following quality cut below) are shared, as per MOU agreement, using a tighter $\pm 32\mu$ s coincidence if the core distance from CLF ≤ 2 km

TA QUALITY CUT FOR RECONSTRUCTED SHOWERS (ApJ 768 L1 (2013)):

- Number of TA SDs \geq 5
- Zenith angle $\leq 45^{\circ}$
- Standard deviation of $800 \le 0.25$
- χ^2 /ndf in geometry and profile ≤ 4.0
- Uncertainty of arrival direction $\leq 5^{\circ}$
- Primary energy $\geq 1 \text{ EeV}$

ADDITIONAL SHOWER / SIGNAL SELECTION PARAMETERS:

- $E(TA) > 3. \times 10^{18} \text{ eV} 80\%$ trigger efficiency TA SD [NIM A689 (2012) 87]
- S(TA@CLF) > 5 MIP Station signal above threshold / prevents accidental coinc.
- S(Auger@CLF) > 3 VEM Station signal above threshold / prevents accidental coinc.

TA reconstructed data

Energy (TA FD): 4.58 EeV Zenith angle: 38.28° Azimuth angle: 216.69° Core distance (global TA station): 825 m Core distance (Auger station): 811 m

Step 1 : TA reconstructed data to Auger simulations

TA reconstructed data

Auger simulations

Energy (TA FD): 4.58 EeV Zenith angle: 38.28° Azimuth angle: 216.69° Core distance (global TA station): 825 m Core distance (Auger station): 811 m Energy (Auger FD): 4.15 EeV Zenith angle: 38.28° Azimuth angle: 216.69° Core distance (SSD): 825 m Core distance (WCD): 811 m

 \bigcirc

Simulations:

- Hadronic models: QGSJET II.03/04, EPOS-LHC
- Shown here: QGSJET II.04
- S_{WCD}([VEM]) directly from Auger Offline
- $S_{TA}([MIP])$ scaled from $S_{SSD}([MIP])$ obtained with Offline

Step 2: Correction for experimental muon excess

Simulations:

- Hadronic models: QGSJET II.03/04, EPOS-LHC
- Shown here: QGSJET II.04
- $S_{WCD}([VEM])$ directly from Auger Offline
- $S_{TA}([MIP])$ scaled from $S_{SSD}([MIP])$ obtained with Offline

Correction:

- S_{em} and S_{μ} corrections, mostly for μ excess
- Correction parameters available only for QGSJET II.04 and EPOS-LHC

UHECR 2018, Paris (France), Oct 8-12, 2018

11

Step 2: Correction for experimental muon excess

Other events:

Fred Sarazin (fsarazin@mines.edu) Physics Department, Colorado School of Mines

Step 3: Mahalanobis distance characterization

$$D_{M} = \sqrt{(\vec{x}_{data} - \vec{\mu})^{T} S^{-1} (\vec{x}_{data} - \vec{\mu})}$$

- A metric is needed to estimate the distance between the experimental data point and the predictions from simulation for each event
- **Mahalanobis distance** (introduced in 1936) is the multi-dimensional generalization of the idea of measuring how many standard deviations away a data point P is from the mean of a distribution D.
 - $\vec{x}_{data} = (S_{CLF}(Auger), S_{CLF}(TA))$ and $\vec{\mu} = (S_{SIM}(Auger), S_{SIM}(TA))$
 - S is the covariance matrix
- **Note:** in what follows, ΔD_M is not calculated (work in progress)

Step 3: Mahalanobis distance characterization – S_{TA} and S_{Auger}

Physics Department, Colorado School of Mines

Step 3: Mahalanobis distance characterization – Core distance

- Larger corrections observed for intermediate core distances
- Low energy showers!
 - Large core distances \rightarrow Uncertainties dominated by Poisson statistics
 - Small core distances → Signals are EM dominated / relatively small corrections
- More data needed... data collection still in progress.

Auger@TA phase I – future plans

DATA COLLECTION

- Continue data collection using TA global trigger for "high energy" showers
- Collect (indirectly) the waveforms from the local TA station
 - Improve external AN AS triggering scheme to select higher quality "low-energy" showers
 - Try to extract S[MIP] of the local TA station to get more S(TA) vs S(Auger) correlations

DATA ANALYSIS AND SIMULATION

- Add Lateral Distribution Function (LDF) information to Auger@TA MOU agreement
- Include WCD in TA simulations, compute Mahalanobis distance using TA simulation chain
- Additional study with TA scintillator detectors under concrete blocks at CLF?

AUGER@TA – Phase II

Deployment and operation of an independent Auger micro-array [See also poster by C. Covault]

Fred Sarazin (fsarazin@mines.edu) Physics Department, Colorado School of Mines

Phase II: deployment and operation of an AN micro-array

- Planned location of the Auger micro-array inside TA [yellow pins]
 - Independent trigger
 - Independent reconstruction
 - "Hybrid" Auger–TA reconstruction
 - . . .

- Auger North SD stations ready to deployed at the TA CRC
- Communication system being tested at CWRU
- Array simulation under way at Mines

Fred Sarazin (fsarazin@mines.edu) Physics Department, Colorado School of Mines

UHECR 2018, Paris (France), Oct 8-12, 2018

18

 S_{38}^* : estimator adapted to TA SD spacing [S(800)]

UHECR 2018, Paris (France), Oct 8-12, 2018

Fred Sarazin (fsarazin@mines.edu) Physics Department, Colorado School of Mines

Auger@TA phase II – near-term plans

Also see C. Covault poster at this meeting

DEPLOYMENT:

- Deployment (of TA x 4) will start February 2019
- Two Auger North stations deployed using a flat bed truck / water delivered with tanker
- Off-the-shelf communication system between WCDs and Black Mesa tower
- Communication test on-going at CWRU / debugging in the field prior to second deployment
- Full deployment and operation will depend on funding

DATA COLLECTION:

- Two stations = T3 requests = data from EAS, but no independent Auger reconstruction
- Auger TA co-located detectors = more station-level comparisons

SD cross-calibration (Auger@TA) Working Group members

AUGER

Mines

- Jeff Johnsen (PhD)
- Fred Sarazin
- Orlen Wolf

Case Western (CWRU)

- Corbin Covault
- Ryan Lorek (PhD)
- Sean Quinn (now UCLA)
- Robert Sobin

KIT

• David Schmidt (PhD)

Auger

• Ricardo Sato

TELESCOPE ARRAY

ICRR / Tokyo

- Hiroyuki Sagawa
- Nonaka Toshiyuki
- Toshihiro Fujii (also Auger)
- Takashi Sako
- Ryuji Takeishi

New members welcome!

Fred Sarazin (fsarazin@mines.edu) Physics Department, Colorado School of Mines

THE END

Fred Sarazin (fsarazin@mines.edu) Physics Department, Colorado School of Mines

- Gray data points: signals measured in colocated TA and Auger stations at the TA CLF, when a time coincidence is established with the TA global trigger
- Black data points: additional condition on TA spectrum quality cut (i.e. well reconstructed showers)
- Expected slope consistent with simulations (ICRC 2017, PoS 395)
- Orthogonal Distance Square (ODS) fit: $S(TA)_{MIP} = (0.42 \pm 0.05)S(Auger)_{VEM}^{1.09\pm0.03}$
- Ordinary Least Square (OLS) fit:

 $S(TA)_{MIP} = (0.66 \pm 0.06)S(Auger)_{VEM}^{0.91\pm0.03}$

[Note: Signals **not** corrected for (slight) difference of location between Auger / TA SD stations]

DATA:

- Open circle (all data, ICRC 2017)
- Fill circle (TA reconstructed showers, ICRC 2017)

WCD+SSD Auger simulations:

- Energy: E = 3.98 EeV
- Zenith angle: $\theta = \{0, 12, 25, 36, 45, 53\}^{\circ}$
- Core distance: r = 600 m

SSD (4m²) to TA (3m²):

• Scaling: 0.75

From: S.Quinn et al., ICRC 2017, PoS 395 Auger@TA

Fred Sarazin (fsarazin@mines.edu) Physics Department, Colorado School of Mines

SIMULATION RE-NORMALIZATION:

$$S_{resc}(R_E, R_{had})_{i,j} \equiv R_E S_{EM,i,j} + R_{had} R_E^{\alpha} S_{had,i,j}$$

Assuming protons ($\alpha \approx 0.9$):

Fred Sarazin (fsarazin@mines.edu) Physics Department, Colorado School of Mines

Distribution of Mahalanobis distances (QGSJET II.04 – muon corrected)

QGSJET II.04 - muon excess corrected

Auger North vs Auger South response

- We don't have (yet) a mean to assess reconstruction parameters using our local trigger b/c we are not able to collect the TA station waveforms, hence we are not able to tighten the correlation of the grey data points
- Correlation with TA global trigger
 low statistics.

Fred Sarazin (fsarazin@mines.edu) Physics Department, Colorado School of Mines