

Tests of hadronic interactions at ultra-high energies with the Pierre Auger Observatory L. Cazon for the Auger Collaboration

Composition and hadronic interactions: a vicious circle

Deriving conclusions on hadronic interactions is inherently difficult.

p, Fe Ideally you'd select pure beams, but selecting pure beams requires detailed understanding of hadronic interactions Probe different shower components • EM component (Fluorescence detector) Muon component (Surface detector)

Muons trace the hadronic shower which is the backbone of the whole cascade

 π^0 decays are the propellers of the EM cascade

Muons in air showers

R. Ulrich, APS 2010

X_{max} is dominated by first interaction

Muons are produced late in shower cascade

- \rightarrow number of generations ~6 at 10¹⁹ eV
- → amplified sensitivity to hadronic interactions

Air showers recorded at Auger

Air showers recorded at Auger

p-Air cross-section: result

Possible He contamination main source of systematic uncertainty. 25% He maximum contamination assumed for sys. uncertainties

pp cross-section

Conversion from p-air to pp by Glauber theory to get inelastic pp x-section

X-section in mb

 $76.95 \pm 5.4 (\text{stat}) + ^{-5.2}_{-7.2} (\text{syst}) \pm 7.1 (\text{Glauber})$ at $\sqrt{s_{pp}} = 38.7 \pm 2.5 \text{ TeV}$

 $85.62 \pm 5(\text{stat}) + ^{-5.5}_{-7.4} (\text{syst}) \pm 7.1 (\text{Glauber})$ at $\sqrt{s_{pp}} = 55.5 \pm 3.6 \text{ TeV}$

Phys. Rev. Lett. 109, 062002 (2012); ICRC2015

Models show contradictions in the interpretation of X_{max}

EM longitudinal profile

E: 10^{18.8} -10^{19.2} eV

Muon number in hybrid events with $\theta < 60^{\circ}$

Systematic uncertainties on R_E and $R_{had}\,{\sim}10~\%$

ML fit adjusting EM and muonic contribution to \$1000

 $S_{\text{resc}} = R_E \ S_{\text{EM}} + R_{\text{had}} \ R_E^{\alpha} \ S_{\text{had}}$ $\alpha \simeq 0.9$ $R_{\mu} \approx 0.93 \ R_E^{0.9} \ R_{\text{had}} + 0.07 \ R_E$

No energy rescaling is needed

The observed muon signal is a factor 1.3 to 1.6 larger than predicted by models

Smallest discrepancy for EPOS-LHC with mixed composition at the level of 1.9 σ

R_{μ} in highly inclined events

$$N_{\mu} = A \left(\frac{E/A}{\xi_{\rm c}}\right)^{\beta}$$
$$\langle R_{\mu} \rangle = a (E/10^{19} \text{ eV})^{b}$$

 $a = \langle R_{\mu} \rangle (10^{19} \text{ eV}) = (1.841 \pm 0.029 \pm 0.324(\text{sys})),$ $b = d \langle \ln R_{\mu} \rangle / d \ln E = (1.029 \pm 0.024 \pm 0.030(\text{sys})),$ $\sigma [R_{\mu}] / R_{\mu} = (0.136 \pm 0.015 \pm 0.033(\text{sys})).$

Phys. Rev. D 91, 032003 (2015)

Results on $\langle \ln R_{\mu} \rangle$

Muon deficit in sims, and also deficit on energy derivative (muon gain)

Direct muon measurement with AMIGA

16

- 7 stations
- 30 (60) m² scintillator modules
- 2.3 m below ground
- 1 GeV/cosθ
- AMIGA in slave mode wrt SD station
- 1 full year of data with PMTs
- PMTs to be replaced by SiPMs

Systematic effects studied in detail, e.g. corner clipping muons

40 45 50

Energy dependence of the muon density

Further hint to muon deficit in simulations at lower energies (from X_{max}: dominated by light elements!)

For more details see poster by Sarah Müller

Muon Production Depth

Two assumptions:

- Muons are produced in the shower axis
- Muons travel following straight lines

Muon Production Depth vs simulations

Rise

- SD signal in vertical events
- Time elapsed between 10% and 50% of integrated signal
- Sensitive both to EM and muonic

Phys. Rev. D 96, 122003 (2017)

Summary and conclusions

- FD: EM shower is fairly well described by models, our best mass estimator is X_{max}
- FD+SD: Measurements of muon content; X_{max} & S1000
 - No need for E rescaling, thus muon problem Muon rescaling factor 1.3-1.6
- SD: *R_μ* in inclined showers
 Increasing MC deficit with increasing energy
- SD: Muon Production Depth mismatch provides further constraints in hadronic models; timing of muons
- SD: risetime (EM+mu) reveal hadronic models inconsistency in a more convolved way
- AMIGA (new): extending down to 3x10¹⁷ eV; simulations at variance with data given X_{max} data

Summary and conclusions

Systematic uncertainty of p450

Systematic Uncertainty		Percentage
Eff. corr.	$\sigma_{ m sys, eff} / ho_{450}$	9.9%
Calibration	$\sigma_{ m sys,thr}/ ho_{450}$	3.9%
Soil density	$\sigma_{ m sys, soil}/ ho_{450}$	2.8%
LDF	$\sigma_{ m sys,LDF}/ ho_{450}$	8.8%
Atten. corr.	$\sigma_{\mathrm{sys},f_{\mathrm{att}}}/f_{\mathrm{att}}$	2.3%
Total	$\sigma_{\mathrm{sys}, ho_{35}}/ ho_{35}$	14.3 %

p-Air cross-section: uncertainties

-

		$10^{17.8} - 10^{18} \mathrm{eV}$	$10^{18} - 10^{18.5} \mathrm{eV}$		
	σ_{p-air} uncertainties				
	Λ_{η} , systematic uncertainties (mb)	13.5	14.1		
	Hadronic interaction models (mb)	10	10		
	Energy scale uncertainty, $\Delta E/E = 14\%$ (mb)	2.1	1.3		
	Conversion of Λ_{η} to σ_{p-air} (mb)	7	7		
	Photons (mb)	4.7	4.2		
Γ	Helium, 25% (mb)	-17.2	-15.8		
	Total systematic uncertainty on σ_{p-air} (mb)	+19/-25	+19/-25		