Leading Cluster Approach to Simulation of Hadron collisions

with Ghost Generator

J.N. CAPDEVIELLE

APC-CNRS and Univ.Paris Diderot, Paris
Z. PLEBANIAK, B.SZABELSKA, J. SZABELSKI

NCBJ, AstroPh- Lodz, Poland

Outlook

. VHE Interactions in the LHC

- 4 gaussians or multiple clusters, charged multiplicity, central pseudorapidity density, energy dependence of the mean central charged particle density
- pseudorapidity distribution normalized by the mean multiplicity
- Semi inclusive data
- KNO scaling in central region, Empirical scaling
- Semi-inclusive data

Leading clusters

- leaders distributed randomly
- leaders confined among 10% of most energetic secondaries

Approach with Gaussian deviates

- 4 gaussian functions

- $A_{i}\left\{\exp \left(-0.5 u_{i}\right)+\exp \left(-0.5 v_{i}\right)\right\}$
- $u_{i}=\left\{\left(y-y_{i}\right) / \sigma_{i}\right\}^{2}$
- $v_{i}=\left\{\left(y+y_{i}\right) / \sigma_{i}\right\}^{2}$
$A_{i}=5.21,5.6$
$Y_{i}=4.7,1.53$
$\sigma_{I}=1.5,1.3$

Hyperbolic approach

Dependance $1 / \cosh ^{2} y$

$$
\begin{aligned}
& A_{i}\left\{1 / \cosh ^{2} u_{i}+1 / \cosh ^{2} v_{i}\right\} \\
& \cdot u_{i}=\left\{a_{i}\left(y-y_{i}\right)\right\} \\
& \cdot v_{i}=\left\{a_{i}\left(y_{i}+y_{i}\right)\right\} \\
& A_{i}=5.21,5.5 \\
& Y_{i}=5.0,1.5 \\
& a_{i}=1.5,1.3
\end{aligned}
$$

Gaussian hadronic generation

- Multiplicity N via negative binomial function $\Psi(z)$ with KNO scaling violation ($z=N /<N>$)
- Central regularity vs z, parameters for semi-inclusive data
- couples ($y_{i}, p_{t i}$) via gaussian generation of rapidity and \mathbf{p}_{t}
- Validity of the set of secondaries for a single collision, conservation laws, rejections...
- Treatment of SD and DD
- Respective cross sections for SD, DD, NSD and inelastic data

Approach of the pseudorapidity source (no more plateau of Feynman?)

INTEST option of CORSIKA

 (with Z. Plebaniak and J. Szabelski)

$\rho_{o}=0.70835 \mathbf{s}^{0.11775}$ Or $0.24 \operatorname{Ln}(\mathrm{~s})+0.1+0.426 \mathrm{Ln}(\mathrm{s})-6.1$?

Charged NSD Multiplicity

Central pseudorapidity density

Fig.1b (right): Central pseudorapidity density dependence on s for $E_{0}=10^{13}-10^{17} \mathrm{eV}$.

KNO scaling violation

Fluctuations of NSD total multiplicity
Violation between ISR ($V_{\mathrm{s}}=53$
GeV) and UA5 ($\sqrt{\mathrm{s}}=540 \mathrm{GeV}$)
established in 1983

UA5, Alner et al.,Phys. Lett. B 180 (1986), 415

Scaling in central region $V_{\mathrm{s}}=53$ GeV and $\sqrt{ } \mathbf{s}=540 \mathrm{GeV}$?? for $|\eta|$ < 1.3
UA5, Alner et al., Phys. Lett. B 138 (1984), 304

KNO scaling violation in central region

Violation of KNO scaling at Vs $=8 \mathrm{TeV}$

Measurements of Alice and UA5 KNO scaling in central region of pseudorapidity is no more conserved for Vs> 1 TeV

Violation of KNO scaling in central region

Comparison of GHOST results (histograms) with Alice and Atlas data at $\mathrm{Vs}=$ 8 teV

Test of scaling in

 fragmentation regionRight: UA5 NSD pseudorapidity distribution at $V s=200,546,900$ GeV
Left: Inelastic pseudorapidty distribution in the beam rest frame for $\mathrm{Vs}=53,200,546,900 \mathrm{GeV}$

Pseudorapidity Distribution, NSD, 8 TeV with GHOST

(Vilataion of) KNO scaling

Figure 3: Fig.3a. Fluctuations of total charged NSD multiplicity.

Central regularity

Fig.3b. Empirical scaling function $\zeta=\mathrm{f}(\mathrm{z})$ for $\sqrt{s}=200,546$ and 900 GeV for NSD collisions.

Semi inclusive data LHC

Figure 4: Fig.4a (left): Semi-inclusive NSD pseudo-rapidity distribution, $z=0.5,1 ., 1.5,2$ correspond respectively to relative intervals of $N_{c h}[0.25-0.75],[0.75-1.25],[1.25-1.75],[1.75-2.25]$.

3.3 Semi-inclusive data

The semi-inclusive data is governed by the integro-differential system:

$$
\begin{align*}
& \frac{d N}{d y_{y=0}}=m_{r} \frac{d N}{d \eta_{\eta=0}}=m_{r} \zeta \bar{\rho}(0) \tag{3.3}\\
& \int \frac{d N}{d y} d y=z\langle n\rangle \tag{3.4}
\end{align*}
$$

m_{r} is the ratio of central mean rapidity density and mean central pseudo rapidity density derived from the "dip" existing in the centre of the pseudorapidity distribution, resulting from the mass m and the transverse mass m_{T} of the secondaries as $m_{T}=\sqrt{1-\frac{m^{2}}{m_{T}^{2}}}$. In the case of the 4 gaussian generation (one pair of functions in each hemisphere, symmetrics around the center of mass,

$$
\begin{gather*}
\frac{d N}{d y}=\sum_{i=1}^{i=2} a_{i}\left(e^{-0.5 u_{i}}+e^{-0.5 v_{i}}\right) \tag{3.5}\\
u_{i}=\left(\frac{\left(y-y_{i} i\right.}{} \sigma_{i}\right)^{2}, v_{i}=\left(\frac{\left(v+y_{i}\right)}{\sigma_{i}}\right)^{2}
\end{gather*}
$$

it is possible to use the opportunity of the scaling 3-2 in the relation between the center y_{i} and the width σ_{i} of each gaussian function as

$$
\begin{equation*}
y_{i}=\sigma_{i}\left(2 \ln \left(\frac{z\langle n\rangle}{\sqrt{(2 \pi) \zeta \sigma_{i}}}\right)^{0.5}\right. \tag{3.6}
\end{equation*}
$$

After introducing one proportion χ of the multiplicity distributed to the pair of gaussian centered in central region and in mid-rapidity region, it is possible to obtain with a minimal Monte Carlo

INELASTIC pseudo-rapidity distribution $V_{\mathrm{s}}=8 \mathrm{TeV}$ (... all secondaries,_ corrected for $\mathrm{Pt}<100 \mathrm{MeV}$ red CMS $\mathrm{Pt}<40 \mathrm{MeV}$ TOTEM) balance $\mathrm{g} 152 \% \mathrm{~N}, \mathrm{~g} 248 \% \mathrm{~N}$

$$
\mathrm{y}_{1}=1.28, \sigma_{1}=1.22 \quad \mathrm{y}_{2}=4.4, \sigma_{2}=1.4
$$

Inelastic pseudorapidity

CMS and Totem data.
Calculation with the generator GHOST at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ and
$\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$.

NSD and INELASTIC distributions

Simulation with Ghost
Data from CMS (only inelastic for points)

- NSD distribution

Case of leading cluster used inside 10\% of most energetic secondaries

This is not the previous calculations where the leading particles have been taken randomly at the end of the generation of all charged secondaries

Conclusion

- The multi-source Generator GHOST can reproduce the inclusive as well as the semiinclusive data.
- The guidelines derived from LHC data at Vs = $8,13 \mathrm{TeV}$ allow better simulations and extrapolations up to 100 TeV .
- The enhancement of the inelasticity indicates also a weaker participation of the leading cluster at UHE.
- Attempts are proceeded to insert GHOST in CORSIKA.

Pseudo-rapidity distributions (NSD) Vs = 7 TeV left wrong (blue points Totem inelastic others NSD) right estimated blue points NSD, all NSD

4 component rapidity generator

- From HDPM (hybrid dual parton model) to GHOST
(Generator of hadrons for simulation treatment)
- Symmetry forward backward hemispheres
- 4 sources of multiparticle production

INELASTIC pseudo-rapidity distribution $V_{\mathrm{s}}=8 \mathrm{TeV}$ (... all secondaries,_ corrected for $\mathrm{Pt}<100 \mathrm{MeV}$ red CMS $\mathrm{Pt}<40 \mathrm{MeV}$ TOTEM) balance $\mathrm{g} 152 \% \mathrm{~N}, \mathrm{~g} 248 \% \mathrm{~N}$

$$
\mathrm{y}_{1}=1.28, \sigma_{1}=1.22 \quad \mathrm{y}_{2}=4.4, \sigma_{2}=1.4
$$

COSMIC RAYS

 Concorde hits the fan
CERN Courier april 97

For the past 15 years, a Paris/ Tokyo cosmic ray osilaboration has been flying emulsion chambers on Concorde, typically exposing for 200 hours at altitudes of 17 kilometres. While the event harvest has enabled the researchers to cover a wide range of physics - garnma ray flux. nucleon-nucleus collisions, fragmentation of heavy primaries, hyperstrange baryonic matter one particularly intriguing event, corresponded to a stratospheric gamma ray shower at $10^{7} \mathrm{GeV}$, containing over 200 gammas above 200 GeV (higher energy events, up to $10^{\prime \prime} \mathrm{GeV}$. have been seen elsewhere).
At first, this high energy event. dating from 1982, was neglected. Only later did physicists notice the tendency for its gammas to slot together in a plane, or sheet, following suggestions reported from cosmic ray exposures ai 4360 m in the Pamir mountains in Central Asia.
Taking another look at the high energy Concorde event last year, Jean-Noell Capdevielle of the College de France started to plot the gammas by hand, starting with the most energetic, and was startled to find they were on an almost perfect straiaht line

Near $10^{7} \mathrm{GeV}$, $211 \gamma^{\prime} \mathrm{s}$

Fan-like array of high energy gamma rays (photons) seen in an cosmic ray event recorded oy a Panis/Tokyo collaboration thying emulsion chambers on Concorde at alutudes of :7 kilometres. The photon energies (vertical exis) are in TeV, white the horizontal pixels are mm square.

Such sheet-like alignments are also seen in a dozen or so events by the large Pamir chambers (several hundred tonnes), which also see the emergent hadrons but are degraded

Linear collision cours

\checkmark nile attention is focused on CERN's LHC proton collider the next major step for particle physics, the parallel electron-positr collider route is acknowledged as providing a complementary approe to many outstanding physics questions.
With CERN's 27 -kilometre LEP electron-positron ring defining a feasibility limit for circular electron machines, research and

One γ ray of $200 \mathrm{TeV} .$.

Concorde - adding to the repertoire of cosmic ray experiments.
(Photo Aur France)
i
High flying physics
Cosmic ray physicists have always had to aim high. In the consiant search for interactions produced as close as possible to the immensely high primary particles entering the earth's atmosphere from outer space, they have installed experiments on high mountain peaks and flown detectors aloft in balloons.

In these studies, there have been periodic sightings of remarkable configurations of secondary partic!es. These events, many of which bear exotic names like Centauro. Andromeda, Texas Lone Star, etc., frequently defy explanation in terms of

CERN Courier October 1981

Experiences ECHOS started in October 1978
One collision of 10^{6} GeV (high multiplicity, spikes in the distribution of pseudo-rapidité) at first exposure

