

Air showers, hadronic models, and muon production

S. J. Sciutto Departamento de Física and IFLP/CONICET Universidad Nacional de La Plata La Plata, Argentina

UHECR 2018

Paris, 11/Oct/2018

Auger Collab., Phys. Rev. D, 91, 032003 (2015).

 R_{μ} evaluated from ground muons with E > 300 MeV produced in showers inclined 67 deg.

AIRES 18.09.00.

- Pre and post-LHC versions of the hadronic models EPOS, QGSJET, and SIBYLL.
- Propagation of an extended set of particles.
- Detailed decay of unstable particles.
- Extended set of particle data available for analysis:
 - Parent particle info (identity, energy, altitude).
 - Last hadronic event info (proj. identity and energy, altitude).
- Numerous technical improvements.

• Visit aires.fisica.unlp.edu.ar

Ground muon analysis with AIRES. Muon lateral vs last hadronic projectile energy distrib.

EPOS-LHC

SIBYLL 2.3c

10 EeV proton showers inclined 67 deg. Ground muons with *E* > 300 MeV

 R_{μ} evaluated from ground muons with E > 300 MeV produced in showers inclined 67 deg.

Longitudinal analysis with AIRES. X_{max} versus primary energy

AUGER spectrum and X_{max} combined fit

Auger Collab., JCAP, 04, 038 (2017).

X_{max} and combined fit composition. New analysis with AIRES 18.09.00

 R_{μ} evaluated from ground muons with E > 300 MeV produced in showers inclined 67 deg.

Combined fit composition and ground muons

Combined fit composition and ground muons (Again!)

Solid curve shifted by a constant offset to match data points.

Combined fit composition and ground muons (Again, including SIBYLL)

Solid curves shifted by constant offsets to match data points.

Analysis of model differences. *Kinds of secondaries*

Secondary particles generated in100 EeV proton-N¹⁴ collisions

L. Calcagni, C. A. García Canal, SJS, T. Tarutina, Phys. Rev. D, 98, 083003 (2018).

Some remarks

- Energy dependence of muon number measured in inclined showers shows reasonable consistency with mixed primary composition.
- Persisting deficit in the simulated muon numbers, for all the hadronic models.
- Work in progress: Extend and refine our analysis of the secondaries produced.

Thank you!

Backup Slides.

Longitudinal development (X_{max}) New analysis with AIRES 18.09.00

Analysis of model differences. *Muon Production Depth*

32 EeV proton showers inclined 55 deg. Ground muons with *E* > 300 MeV, distant more than 200 m from the shower axis

See, L. Calcagni, C. A. García Canal, SJS, T. Tarutina, Phys. Rev. D, 98, 083003 (2018).

Analysis of model differences. *Muon Production Depth*

32 EeV proton showers inclined 55 deg. Ground muons with *E* > 300 MeV, distant more than 1200 m from the shower axis

See, L. Calcagni, C. A. García Canal, SJS, T. Tarutina, Phys. Rev. D, 98, 083003 (2018).