

In-ice radio arrays for the detection of ultra-high energy neutrinos

Prof. Amy Connolly Oct. 12, 2018

Outline

- Science motivation for in-ice radio arrays
- Radio Cerenkov
- Other techniques
- Future

Science motivation

astronomy

High Energy Neutrino Astronomy

- Want to dig deep into this region here
- Where does
 astrophysical flux
 measured by IceCube
 cutoff?
- Measure astrophysical flux at ultra-high energies, from sources or cosmogenic

fundamental physics

Cross Sections

20 Number of events SM 18 $x_{min}=1, N_{D}=1, M_{D}=1 \text{ TeV}$ UHE neutrino-nucleon -···-· x_{min} =1, N_{D} =7, M_{D} =1 TeV 16 ---- $x_{min}=3$, $N_{D}=7$, $M_{D}=1$ TeV interactions probe ____ x_{min}=1, N_D=7, M_D=2 TeV 14 center-of-mass 12 energies beyond LHC 10 Upward-going Down-going $E_{\rm v} = 10^{18} \, {\rm eV}$: 4 A. Connolly, R. Thorne, $E_{\rm CM} = \sqrt{2m_N E_\nu} = 45 {\rm TeV}$ D. Waters, Phys.Rev. D83 2 (2011) 113009. 0 0.2 -0.20.4 0.6 0.8 0 $\cos \theta_{7}$ ED model predictions from J. Alvarez-Muniz and E. Zas,

Phys. Lett. B411, 218 (1997).

7

Real measurements now!

neutrino 0.8 σ_v/E_v (10^{-38} cm^2/GeV) antineutrino -weighted combination - this result 0.6 0.4 0.2 accerterator data 0.0 2.5 3.5 6.5 5.5 4.5 1.5 $\log_{10}(E_v [GeV])$

CERN COURIER

Jan 15,2018

The case of the disappearing neutrinos

IceCube Collaboration

The case for going beyond optical

- ~ 10 cosmogenic neutrinos / km² / year
- 10¹⁸ eV: vN interaction length O(1000) km
- \rightarrow 0.01 neutrinos / km³ / year
 - At most, we see 1/2 the sky
 - \rightarrow 0.005 neutrinos / km³ / year
- Neutrinos from sources at a similar level

We need >100's of km³ detection volumes

Radio Cerenkov Technique

- Shower 20% charge asymmetry
- Cerenkov radiation
- Coherent for $\lambda \gg 10$ cm

 \rightarrow **RADIO** Power $\propto E_{shower}^2$

Confirmed experimentally in sand, salt, ice: PRL 86, 2802 (2002); PRD 72, 023002 (2005); PRD 74, 043002 (2006); PRL 99, 171101 (2007)

Two classic approaches

Instrument the ice

View from a distance

Graphic: Oindree Banerjee

 Pure ice is low-loss for radio: field attenuation lengths ~1 km

12/57

The Ohio State University

Askaryan Radio Array (ARA)

Credit: Mike Duvernois, ARA/NSF

13

ARIANNA - Moore's Bay

- ARIANNA designed for minimum power and remotely powered operation, surface design allows for access
- Observes cosmic rays

In-ice expansion - move down and left

- On EdN/dE plot
 - By expanding you move down
 - By reducing thresholds you move left

Reducing thresholds - move left

Phased array

 A. G. Vieregg, et al., JCAP 1602 (2016) no.02, 005.
 Calculate summed correlation in electronics before trigger decision

Newly deployed in ARA station
 5 last season

Figure credit: Eric Oberla Univ. of Chicago

5

15

In-ice expansion Next-Generation Radio Array (NGRA)

- Folks from existing in-ice arrays have been working together on combined proposed effort
- Intense discussions and optimizations ongoing
- Aiming for fast-approaching Dec 2018 deadline

Science goals for Antarctic Radio In-Ice Array

- Science goals two-fold
 - Aim to overlap with IceCube's sensitivity near 10¹⁶ eV
 - Explore new parameter space across broad energy range up to 10^{20} eV
- CRs:
 - Don't aim for CR physics itself
 - measure CRs as background to neutrino searches
 - validation observe natural, radio impulses ¹⁹

Next-Generation Radio Array (NGRA) Designs being considered

- Prefer to choose one station for uniformity
- Depth up to 100 m
- Simulators working round the clock!

Looking ahead

- K. de Vries et al. low energy (40 MeV) beam test
- TARA experiment in Utah (PI's D. Besson & J. Belz) attempted with air showers
- Looks like dense media needed
- Steven Prohira KU, starting CCAPP Fellow Fall 2018. Led SLAC beam test under DOE Office of Science Grad Fellowship

The Ohio State University

*Speaker

RADAR Preliminary results shown at TeVPA

(left to right) Steven Prohira, Krijn de Vries, Jorge Torres Espinosa, Uzair Latif

GENETIS (Genetically Evolving NEutrIno TeleScopes

- With Prof. Stephanie Wissel (Cal Poly), Research Scientist Kai Staats
- Using genetic algorithms (type of ML) to evolve detector designs for neutrino telescopes
- Starting with antenna designs u.osu.

GENETIS Mini-Collaboration Meeting April APS 2018

Heavy involvement from undergraduates

u.osu.edu/connolly/genetis

GENETIS

 Lately a growth in genetically evolved antennas (mostly narrow band)

GENETIS loop (now in action):

ST5: A narrow-band antenna designed using genetic algorithms by NASA for satellite communications

[2] https://ti.arc.nasa.gov/m/pub-archive/1244h/1244%20(Hornby).pdf

 May be well suited to design antennas under tight constraints

u.osu.edu/connolly/genetis

Summary

- Let's see what nature has in store above 10 PeV!
 - UHE astronomy at cosmic distances
 - Tests of fundamental physics
- Current experiments are expanding and reducing thresholds
- Watch for the development of many novel approaches

Thank you!

Backup slides