MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Report on Tests and Measurements of Hadronic Interaction Properties with Air Showers

Hans **Dembinski** for the WHISP:

J.C. Arteaga, L. Cazon, R. Conceição, J. Gonzalez, Y. Itow, D. Ivanov, N.N. Kalmykov, I. Karpikov, T. Pierog, F. Riehn, T. Sako, D. Soldin, R. Takeishi, G. Thomson, S. Troitsky, I. Yashin, E. Zadeba, Y. Zhezher

Hans Dembinski | MPIK Heidelberg, Germany

Take-home message

- Air shower observables sensitive to **cosmic ray mass** also sensitive to **hadronic interaction properties**, examples:
- Need to know cosmic-ray energy and mass composition precisely to test/measure hadronic interaction properties
- EM component: mostly good data/MC agreement
- Muon component
 - data/MC mismatch in lateral density, production depth, attenuation
 - Muon density measurements from 0.5 PeV to 10 EeV converted into comparable z-factor for the first time
 - **Consistent picture (?)** seems to emerge after correcting energy-scales

Motivation

 Mass composition (<InA>) carries imprint of cosmic-ray sources and propagation

- Uncertainties in hadronic interaction models dominate <InA>, not experimental uncertainties
- Muon Puzzle: Muon measurements have much larger spread and are not consistent with X_{max}

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

Combined approach to get precise unambiguous <InA> data

- Cosmic ray community probes air showers and quantifies inconsistencies
- Collider community provides relevant reference measurements for model tuning

Indirect search for physics beyond the standard model at 100 TeV scale

Connection to LHC measurements

Based on Ulrich et al., PRD 83 (2011) 054026 and Auger: PRD 91 (2015) 032003

ALICE Xe-Xe arXiv:1807.09061; ATLAS Pb-Pb arXiv:1504.04337; CMS p-Pb arXiv:1710.09355v2; CMS p-p arXiv:1507.05915v2; LHCb p-p arXiv:1402.4430

- X_{max} sensitive to: inelastic cross-section, hadron multiplicity
- N_{μ} sensitive to: **energy fraction lost to** π^{0} , hadron multiplicity
- Nuclear modification in forward-produced hadrons expected, largely unexplored, proposal to measure proton-oxygen collisions during LHC-Run 3

Air shower measurements

EM component

- Proton-air cross-section (next slide)
- Longitudinal shape
 - F. Diogo (Auger), ICRC 2015 arXiv:1509.03732v1
 - Average profiles parameterized by width L and asymmetry R
 - Agreement for EPOS-LHC, QGSJet-II.04, some tension for SIBYLL-2.1
- Moments of X_{max} distribution
 - J. Bellido (Auger), ICRC 2017 arXiv:1708.06592v2; Auger: JCAP 1302 (2013) 026
 - First two moments of X_{max} distribution converted to first two moments of InA
 - EPOS-LHC, SIBYLL-2.3 ok; partially unphysical second moments for QGSJet-II.04
- Lateral density profile
 - S. de Ridder (IceCube) ICRC 2017 arXiv:1710.01194v1
 - <InA> computed from <β> and in-ice energy loss (TeV muons)
 - Agreement for QGSJet-II.04, SIBYLL-2.3
 - Disagreement for SIBYLL-2.1, EPOS-LHC
- Attenuation with zenith angle
 - D. Ivanov (Telescope Array) TeVPA 2018
 - Agreement to 45 deg with QGSJet-II.03

Proton-air cross-section

Prime example of measuring hadronic interaction property with air showers

- Based on tail of X_{max} distribution $\frac{dN}{dX_{max}} \propto \exp\left(-X_{max}/\Lambda_{\eta}\right)$
- Decay constant Λ_n anti-proportional to σ_{p-air}
- Tail is proton-rich even in mixed composition

Auger: R. Ulrich et al. PoS(ICRC2015)401; P. Abreu et al., PRL 109, 062002 (2012) Telescope Array: R.U. Abbasi et al., PRD 92, 032007 (2015)

- Weak dependence on energy scale
- Weak dependence on mass-composition
- Good agreement between experiments
- Data starts to discriminate models

Muon component

- Lateral density (rest of talk)
- Production depth/height
 - Auger: PRD 90 (2014) 012012, PRD 90 (2014) 039904, PRD 92 (2015) 019903;
 disagreement for QGSJet-II.04 and EPOS-LHC
 - KASCADE-Grande: Astropart. Phys. 34 (2011) 476; disagreement with QGSJet-II.02
- Production depth preferred: MPD follows longitudinal hadronic profile

- Attenuation with zenith angle
 - KASCADE-Grande: Astropart. Phys. 95 (2017) 25; disagreement with all current models
- High-energy muons: multiplicity
 - ALICE: JCAP 1601 (2016) 032; consistent with QGSJet-II.04
- TeV muons: flux
 - IceCube: Astropart. Phys. 78 (2016) 1;
 disagreement for SIBYLL-2.1, potentially fixed by adding charm
 - T. Fuchs (IceCube), ECRS 2016, arXiv:1701.04067; agreement for SIBYLL-2.1
- TeV muons: lateral-separation
 - D. Soldin (IceCube), ISVHECRI 2018; partial agreement for SIBYLL-2.1/2.3, disagreement for EPOS-LHC, QGSJet-II.04
- Rise-time
 - Auger: PRD 96 (2017) 122003; disagreement for QGSJet-II.04 and EPOS-LHC
 - Auger: PRD 93 (2016) 072006; disagreement for EPOS-LHC (500-2000 m), QGSJet-II.04 (500-1000 m), agreement for QSGJet-II.04 (1000-2000 m)

Muon measurements: overview

lines & boxes: result integrated over range

Pierre Auger	AMIGA preliminary: S. Müller poster ID 204; PRL 117 (2016) 192001; PRD 91 (2015) 032003
Telescope Array	PRD 98 (2018) 022002
IceCube	ISVHECRI 2018 preliminary
KASCADE-Grande	Astropart. Phys. 95 (2017) 25
NEVOD-DECOR	Phys. Atom. Nucl. 73 (2010) 1852, Astropart. Phys. 98 (2018) 13
SUGAR	PRD 98 (2018) 023014
EAS-MSU	Astropart. Phys. 92 (2017) 1
Yakutsk	Unpublished preliminary results
HiRes-MIA	PRL 84 (2000) 4276; not part of WG, only included for comparison

Hans Dembinski | MPIK Heidelberg, Germany

Muon measurements: examples

Combining muon measurements

Step 1: Convert all measurements to z-scale $z = \frac{\ln N_{\mu}^{\text{det}} - \ln N_{\mu,p}^{\text{det}}}{\ln N_{\mu,\text{Fe}}^{\text{det}} - \ln N_{\mu,p}^{\text{det}}}$

corrects simple biases; z_p = 0 and z_{Fe} = 1

Potential divergence from differences in: energy scale offsets, shower age, lateral distances, muon energy thresholds

Hans Dembinski | MPIK Heidelberg, Germany

Energy rescaling 1

Muon density almost proportional to cosmic ray energy

- Excess/deficit over MC very dependent on potential energy scale offset
- Example: energy offset -20 % would cause -18 % muon deficit (MC relative to data)

Superposition model

$$N_{\mu} = A \left(\frac{E}{AE_0}\right)^{\beta} = A^{1-\beta} \left(\frac{E}{E_0}\right)^{\beta}$$

$$\frac{\tilde{N}_{\mu}}{N_{\mu}} = \left(\frac{\tilde{E}}{E}\right)^{\beta}$$

 $\langle \ln N_{\mu} \rangle = (1 - \beta) \langle \ln A \rangle + \beta \ln(E/E_0)$ ind

independent of mass

$$\beta = 1 - \frac{\ln N_{\mu, \text{Fe}} - \ln N_{\mu, p}}{\ln 56} \approx 0.9$$

data/MC muon ratio depends on absolute energy scale

Energy rescaling 2

Cross-calibrate energy scales by matching all-particle fluxes Spectrum WG: Auger 0.948 Telescope Array 1.052 GSF (matched): SUGAR 0.948 KASCADE-Grande 0.95 IceTop 1.19 NEVOD-DECOR 1.08

Spectrum WG: Auger and TA spectrum matched at ankle

GSF: Global Spline Fit to cosmic-ray flux and composition data

- Combines direct observations with indirect observations
- Energy-scale offsets fitted as nuisance parameters

This conference (Oct 8) and

HD, R. Engel, A. Fedynitch, T. Gaisser, F. Riehn, T. Stanev, PoS(ICRC 2017)533

Combining muon measurements

Step 2: Apply energy scale corrections (before)

Still present: possible dependence on energy scale, shower age, lateral distance, energy threshold

Hans Dembinski | MPIK Heidelberg, Germany

Combining muon measurements

Step 2: Apply energy scale corrections (after, experiments with unknown scale not shown)

Hans Dembinski | MPIK Heidelberg, Germany

Zoom on EPOS-LHC and QGSJet-II.04

Still present: possible dependence on shower age, lateral distance, energy threshold

Hans Dembinski | MPIK Heidelberg, Germany

Energy-dependent discrepancy

Other effects also present: possible dependence on shower age, lateral distance, energy threshold

What we have learned

- Combining measurements is very powerful
 - Greatly extends phase-space coverage
 - Allows for cross-checks
 - Reasonable agreement in very diverse experiments
- Challenges and solutions
 - $z = \frac{\ln N_{\mu}^{\text{det}} \ln N_{\mu,p}^{\text{det}}}{\ln N_{\mu,Fe}^{\text{det}} \ln N_{\mu,p}^{\text{det}}}$ Muon measurements differ in many details
 - Convert to comparable quantity z
 - Muon density depends on uncertain mass composition
 - Subtract effect using other variable (e.g. X_{max}) or model (e.g. GSF)
 - Alternative: Select protons (only deep showers) or iron (via direct Cherenkov light) out of mixed composition
 - Muon density offset almost proportional to energy scale offsets
 - **Cross-calibrate relatively** by matching fluxes of air shower experiments
 - Cross-calibration globally with model like GSF

Summary & Outlook

- Summary
 - EM component: mostly good agreement between data and MC
 - Muon component: mostly disagreement between data and MC
 - Ok: TeV muon flux well described by SIBYLL-2.1
 - Not ok: Production depth, attenuation, lateral density profile
 - Muon lateral density profile
 - Consistent picture (?) after converting and cross-calibrating data
 - Smooth increase of data/MC ratio with energy? Checks needed, see outlook
 - Post-LHC models describe muons better than pre-LHC models
 - Data/MC ratio probably less than 1.5 at highest energies

Outlook

- Finish muon density analysis
 - Study data/MC ratio further as function of... zenith angle, core-distance, muon energy threshold, age of shower
 - Try to resolve tensions between experiments
- Develop recommendations for making comparable measurements

Backup

Hans Dembinski | MPIK Heidelberg, Germany

Energy scale offsets

Spectra differ, but not by

simple energy scale offset 10^{24} 10^{24} *JE*³/ a.u. 10^{23} GSF GSF 10²³ Yakutsk, E'/E=1.15 **NEVOD-DECOR** 10^{17} 10^{18} 10^{19} 10^{20} 10^{16} 10^{18} 10^{20} *E*/eV

GSF: energy scale offsets

- **Energy-scale offsets** of experiments = major correlated systematic uncertainty
- Fit constrained **energy-scale adjustment factors** z_F as nuisance parameters •

R. Barlow "Combining Experiments with Systematic Errors", arXiv:1701.03701

$$\tilde{J}(\tilde{E}) = J(E) \frac{\mathrm{d}E}{\mathrm{d}\tilde{E}} = J\left(\frac{\tilde{E}}{1+z_E}\right) \frac{1}{1+z_E}$$

Flux distortion caused by energy-scale offset z_F Flux residuals Energy-scale offset residuals

$$S = \sum_{i} z_i^2 + \sum_{j} \left(\frac{z_{Ej}}{(\sigma[E]/E)_j} \right)^2$$

Fitted energy-scale offsets compatible with reported systematic uncertainties

GSF energy scale anchored by direct measurements

Hans Dembinski | MPIK

GSF: composition details 1

GSF: composition details 2

GSF: <InA>

GSF: residuals

 $\chi^2/n_{dof} = 1358.3/895 = 1.5$

GSF: residuals zoom

 $\chi^2/n_{dof} = 1358.3/895 = 1.5$

Hans Dembinski | MPIK Heidelberg, Germany

Fitting data with correlated errors

4 5 6 8 9 10

2 3

10 points, two groups with systematic offset and correlated errors

Fit line y = a + b x

ignored

Truth: a = 1, b = 2

Generalized least-squares, minimize $Q = (\vec{y} - \vec{y}_{\rm fit})^T C^{-1} (\vec{y} - \vec{y}_{\rm fit})$

C... covariance matrix of data

correlation correctly handled

Hans Dembinski | MPIK Heidelberg, Germany

Flux model

Hans Dembinski | MPIK

Direct Cherenkov light

H.E.S.S.: Phys.Rev. D75 (2007) 042004

H.E.S.S. event with bright pixel from DC light

DC light in Pierre Auger Observatory/Telescope Array?

Simulated direct Cherenkov light from 50 TeV iron nucleus High resolution array could observe first interaction and nuclear break-up

Probing air shower physics

X_{max} is sensitive to high energy interactions High-energy sub-showers dominate X_{max}

N_{μ} is sensitive to high and low energy interactions

 N_{μ} depends on energy not lost to EM component and energy dispersion among secondary particles