Mass Composition Studies with the Pierre Auger Observatory

M. Unger (KIT) for the Pierre Auger Collaboration

Mass Composition Studies

(a) Longitudinal Development of Air Showers with FD

Measurement of Longitudinal Profiles with FD

Event Selection

Event Selection

Performance

Statistics:

42662 event $> 10^{17.2}$ eV, 842 $> 10^{19}$ eV, 62 $> 10^{19.5}$ eV

Resolution:

Systematics:

Cross Checks: Sub-Samples, Cuts, Method

Average Shower Maximum vs. Energy

Pierre Auger Coll., PRL 2011, PRD 2014; update at ICRC17

 $\langle X_{
m max}
angle \propto D_{
m 10} \log{(E/A)}$ (mass A, energy E, elongation rate $D_{
m 10} \sim$ 60 g/cm²/decade)

Average Shower Maximum vs. Energy

Pierre Auger Coll., PRL 2011, PRD 2014; update at ICRC17

 $\langle X_{
m max}
angle \propto D_{
m 10} \log (E/A)$ (mass A, energy E, elongation rate $D_{
m 10} \sim$ 60 g/cm²/decade)

Standard Deviation of X_{max} vs. Energy

Pierre Auger Coll., PRL 2011, PRD 2014; update at ICRC17

Standard Deviation of X_{max}

mixed composition:
$$\sigma(X_{\max})^2 = \langle \sigma_i^2 \rangle + \left(\left\langle \langle X_{\max} \rangle_i^2 \right\rangle - \langle X_{\max} \rangle^2 \right)$$

Comparison to Air Shower Simulations

hadronic interaction models tuned to LHC data

Fit of X_{max} Distributions (p, He, N, Fe)

Pierre Auger Coll., PRD 90 (2014) 12, 122006; update at ICRC17

Fit of X_{max} Distributions

Pierre Auger Coll., PRD 90 (2014) 12, 122006; update at ICRC17

Mass Composition Studies

(b) Correlation of X_{max} and Ground Signal

Measurement of Longitudinal Profiles with FD

Correlation of Xmax and Ground Signal

 $18.5 < \lg(E/eV) < 19.0, X_{max}^*/S^*(1000)$: scaled to $10^{19} eV$

Correlation of X_{max} and Ground Signal

 $18.5 < \lg(E/eV) < 19.0, X_{max}^*/S^*(1000)$: scaled to $10^{19} eV$

[16 of 21]

Correlation of X_{max} and Ground Signal

 $18.5 < \lg(E/eV) < 19.0, X_{max}^*/S^*(1000)$: scaled to $10^{19} eV$

Mass Composition Studies (c) time profiles of SD signals

X_{max} from Risetime of SD Signals

X_{max} from Risetime of SD Signals

X_{max} from Risetime of SD Signals

Measurement of X_{max} with SD

FD-SD cross-calibration:

Full SD data set (517 events > $10^{19.5}$ eV):

Summary:

- measurement of X_{max} distributions, $\langle X_{\text{max}} \rangle$, $\sigma(X_{\text{max}})$, r_{G} , $t_{1/2}$.
- complex evolution of mass composition between 10^{17.2} and 10²⁰ eV
 - light composition just below the ankle
 - increasing mass towards UHE
 - mixed composition at low energies

Outlook:

• mass composition with AugerPrime (emag.- μ separation, see Friday)

