THE COSMIC RAY ENERGY SPECTRUM MEASURED WITH THE PIERRE AUGER OBSERVATORY

Valerio Verzi for the Pierre Auger Observatory

INFN, Sezione di Roma "Tor Vergata"

October 8-12, Paris (France)

THE PIERRE AUGER OBSERVATORY

NIM A 798 (2015) 172-213

Malargüe – Mendoza (Argentina) 35⁰ S latitude 3000 km²

Surface detector (SD)

-1500 m grid of 1600 water cherenkov detectors

- 750 m grid (24 km²) with
61 additional stations

Fluorescence detector (FD)

- 24 telescopes (0⁰-30⁰)
- 3 telescopes (30⁰-60⁰)

Hybrid Observatory energy scale set with the FD

AUGER EVENTS

correction determined from data (no use of simulations)

SD ENERGY ESTIMATOR (vertical events)

fit the lateral distribution of the signals to get S(1000)

use the CIC method to remove the zenith angle dependence of S(1000) $\implies S_{38}$

similar method for the 750m array (S(450) \rightarrow S₃₅)

use muons density maps to get the energy estimator

$$\rho_{\mu} = N_{19} \ \rho_{\mu,19}(r,\theta,\phi)$$

FD EVENTS

Fluorescence yield

 $n_{ADC} \sim \frac{dE}{dX} Y_{flu} T_{atm} C_{calib}$

CALIBRATION OF THE SD ENERGY ESTIMATORS

data sample (Jan 2004 – Dec 2015)

- high quality hybrid events
- above the saturation of the SD trigger efficiency

$$E = A S^B \quad B \approx 1$$

7

ICRC 2017	1500 m		750 m
Zenith angle range [deg.]	0 - 60	60 - 80	0 - 55
Energy threshold	$3 \times 10^{18} \text{ eV}$	$4 \times 10^{18} \text{ eV}$	$3 \times 10^{17} \text{ eV}$
Number of events	2661	312	1276
Α	(0.178 ± 0.003) EeV	(5.45 ± 0.08) EeV	$(14.1 \pm 0.4) \text{ PeV}$
В	1.042 ± 0.005	1.03 ± 0.02	1.000 ± 0.008
Energy resolution [%]	15	19	13

Absolute fluorescence yield	3.4%
Fluores. spectrum and quenching param.	1.1%
Sub total (Fluorescence Yield)	3.6%
Aerosol optical depth	3% ÷ 6%
Aerosol phase function	1%
Wavelength dependence of aerosol scattering	0.5%
Atmospheric density profile	1%
Sub total (Atmosphere)	3.4% ÷ 6.2%
Absolute FD calibration	9%
Nightly relative calibration	2%
Optical efficiency	3.5%
Sub total (FD calibration)	9.9%
Folding with point spread function	5%
Multiple scattering model	1%
Simulation bias	2%
Constraints in the Gaisser-Hillas fit	3.5% ÷ 1%
Sub total (FD profile rec.)	6.5% ÷ 5.6%
Invisible energy	3% ÷ 1.5%
Statistical error of the SD calib. fit	0.5% ÷ 1.5%
Stability of the energy scale	5%

ENERGY SCALE ICRC 2013 - arXiv:1307.5059

FY: high precision measurements of Airfly

good control atmospheric cond. (aerosols: L.Valore, this conf.)

FD calib.: largest contribution (not energy dependent)

data-driven estimation of the invisible energy (A. Mariazzi, this conf.)

Total uncertainty 14%

ENERGY SCALE

14% uncertainty mainly thanks to Airfly

M. Ave et al., Astropart. Phys. 28 (2007) 41

Before 2013 we used Nagano and it was 22%

note: from Nagano to Airfly -8% energy shift !

J. Rosado et al., Astropart. Phys. 55 (2014) 51

note: > 20% difference between Airfly and Kakimoto (TA)

ENERGY SCALE

data-driven estimations of the invisible energy

A. Mariazzi, this conf.

10

note: E_{inv} larger than model predictions as a consequence of the μ number excess (H. Debinski, this conf.)

OTHER ADVANTAGES OF THE HYBRID DETECTION TECHNIQUE

FD 'uncorrelated' uncertainties ICRC 2013 - arXiv:1307.5059

 E_{SD} resolution from E_{SD}/E_{FD} distributions knowing the resolution on E_{FD}

not trivial too guarantee a good E_{FD} res. (e.g.: hourly meas. of aerosols)

Aerosol optical depth	3% ÷ 6%
Horizontal uniformity of aerosols	1%
Atmosphere variability	1%
Nightly relative calibration	3%
Statistical error of the profile fit	5% ÷ 3%
Uncertainty in shower geometry	1.5%
Invis. En. (shower-to-shower fluc.)	1.5%
Total FD energy resolution	7% ÷ 8%

time dependence of the FD calibration not perfectly tracked in time

→ affects both systematics and resolution

Sub total (Fluorescence Yield)	3.6%
Sub total (Atmosphere)	3.4% ÷ 6.2%
Sub total (FD calibration)	9.9%
Sub total (FD profile rec.)	6.5% ÷ 5.6%
Invisible energy	3% ÷ 1.5%
Statistical error of the SD calib. fit	0.5% ÷ 1.5%
Stability of the energy scale	5%
TOTAL	14%

e.g.: small modulation due to E_{FD} rate (SD) vs time for $E_{SD} > 2 \text{ EeV}$

ENERGY SPECTRUM: 1500 m vertical

'raw' spectrum from Jan 2004 10^{38} 10409 7234 • 5047 • 3448 2155 1424 829 $[km^{-2} yr^{-1} sr^{-1} eV^2]$ to Dec 2016 71004 41113 24532 15074 304 128 183332 events 2 $E > 10^{18.4} eV$ 22 4 exposure $I(E) \times E^3$ 10^{37} 51588 km² yr sr $J_{_{raw}}$ E 10^{20} 10¹⁹ $\Delta \varepsilon$ E [eV] **≈**3% Astrop. Phys. 34 (2011) 368-381

E

13

ENERGY SPECTRUM: 1500 m vertical

ENERGY SPECTRUM: 1500 m vertical

note: same unfolding correction as in the full band

1500 m vertical 183332 events E > 10^{18.4} eV 51588 km² yr sr ΔJ/J ~ 5%

AUGER ENERGY SPECTRA

combine the measurements in the full energy range

AUGER ENERGY SPECTRA

rescaling factors of the fluxes:

1500 m vertical (-0.8 ± 0.2)%

1500 m inclined (+5.4 ± 0.7)%

hybrid (-6 ± 2)%

750 m (-1 ± 4)%

AUGER COMBINED ENERGY SPECTRUM

21

OUTLOOK

Auger energy spectrum measured with:

- unprecedented statistics (67000 km² sr yr)
- ~ full data-driven approach
- 14% uncertainty in the energy scale

Further results on Auger spectrum: D. Ivanov - WG talk

UPDATE OF THE ENERGY SCALE – ICRC 2017

Atmosphere

- aerosol scattering out of the CLF/XLF beam
- multiple scattering of the CLF/XLF beam
- → moderate increase of the aerosol concentration

FD Calibration

• telescope-wise optical efficiency

FD profile reconstruction

• Gaisser-Hillas fit: add a constraint in

 $\frac{E_{cal}}{dE \, / \, dX_{\max}}$

Invisible energy from inclined showers

note: some of the systematic uncertainties needs to be update