

Depth of maximum of air-shower profiles: testing the compatibility of measurements

performed at the Pierre Auger Observatory and the Telescope Array experiment

Telescope Array: John Belz, William Hanlon, Daisuke Ikeda, Pierre Sokolsky, Yoshiki Tsunesada Auger: Jose Bellido, Vitor de Souza, Michael Unger, Alexey Yushkov

for the Pierre Auger and Telescope Array collaborations

UHECR, Paris, 09/10/2018

Results presented at the 35th ICRC

 $\left[\text{V. de Souza, PoS} \left(\text{ICRC2017}\right) 522\right]$

Comparison of $X_{\mbox{max}}$ distributions measured by Auger and TA

```
Data (8 years in both experiments):
Auger: PRD 90 (2014) 122005, 122006
Telescope Array: D. Ikeda and W. Hanlon, PoS (ICRC2017) 515
```

```
Energy range: lg(E/eV) = 18.2 - 19.0
```

```
Interaction model: QGSJet-II.04
```

Mass compositions: proton, AugerMix (composition describing Auger data)

"At the current level of statistics and understanding of systematics, the TA data is consistent with the proton models used in this paper for energies less than 10^{19} eV and it is also consistent with the AugerMix composition"

Changes in the current analysis

Data:

Auger: PRD 90 (2014) 122005, 122006; J. Bellido, PoS (ICRC2017) 506, 11 years of data

Telescope Array: ApJ 858 (2018) 76, 8.5 years of data

Energy range: lg(E/eV) = 18.2 - 19.0

Interaction model: EPOS-LHC

Mass composition: AugerMix

Data

common energy range: lg(E/eV) > 18.2

Pierre Auger

4 FD sites

11 years of data (12/2004 - 12/2015)

[J. Bellido, ICRC (2017), PoS 506]

10558 events

Telescope Array

FD sites: Black Rock Mesa and Long Ridge 8.5 years of data (05/2008 - 11/2016) [ApJ 858 (2018) 76] 3330 events

Detector acceptance bias

Auger, PRD 90 (2014) 122005

(A) and (B): nearly vertical showers close to FD site, events with deep and shallow X_{max} are outside the FOV (A + B + C): all events, tails of X_{max} distribution are biased by the detector acceptance

Detector acceptance bias: different analysis strategies

Auger and TA X_{max} measurements can not be compared directly

Auger acceptance, lg(E/eV) = 19.0 - 19.1

X_{max} distributions in both Auger and TA:

compare to MC in corresponding detectors

Method to transport Auger data into TA detector

- Step 1: find MC mix of nuclei reproducing the best Auger X_{max} distributions (AugerMix in the following)
- Step 2: pass AugerMix through TA detector simulations, reconstruction, analysis;

compare AugerMix in TA detector to TA data

Examples of fits of X_{max} distributions :

points — Auger data

histograms — (p, He, N, Fe) nuclei in AugerMix

Choice of the interaction model

J. Bellido, PoS (ICRC2017) 506

QGSJet-II.04: p-values for AugerMix vs Auger data are ≈ 0.01 for lg(E/eV) = 17.8 - 19.2width of the X_{max} distributions is larger than in data of Auger

AugerMix (QGSJet-II.04) is not equivalent to Auger data, not a best choice for comparison to TA

Choice of the interaction model

Bellido, PoS (ICRC2017) 50

EPOS-LHC: good description of X_{max} distributions measured by Auger

comparison to TA will be done using AugerMix (EPOS-LHC)

AugerMix in TA detector

Step 2: Pass AugerMix through TA detector simulations, reconstruction and analysis

AugerMix \otimes TA: bias on $\langle X_{\rm max} \rangle$ of $\approx -5~{\rm g\,cm^{-2}}$ bias on $\sigma(X_{\rm max})$ of few ${\rm g\,cm^{-2}}$

EPOS-LHC simulations are unavailable for TA and are obtained via re-weighting of QGSJet-II.04 simulations [W. Hanlon et al., JPS Conf. Proc. 19 , 011013 (2018)]

currently the re-weighting is done up to lg(E/eV) = 19.0 using AugerMix from [Auger, PRD 90 (2014) 122006]

Auger-TA

 $\langle X_{max}^{TA} \rangle < \langle X_{max}^{Auger} \rangle$ for almost all energies agreement within (stat + sys) errors

 $\sigma(X_{\max}^{TA}) > \sigma(X_{\max}^{Auger})$ for lg(E/eV) = 18.5 - 19.0

TA $\sigma(X_{max})$ interpretation

[TA, ApJ 858 (2018) 76]

"TA's ability to resolve individual QGSJet-II.04 elements is degraded owing to the overlap of the confidence intervals. According to these figures, when considering only the joint distributions of $\langle X_{max} \rangle$ and $\sigma(X_{max})$, within the data's systematic uncertainty the data may resemble QGSJet-II.04 proton, helium, or nitrogen."

Confidence intervals for QGSJet-II.04 MC: 68.3% (blue ellipse), 90% (orange ellipse), 95% (red ellipse)

$\langle X_{\max} \rangle$: Auger vs different TA measurements

Discrepancy Auger – TA (Black Rock Mesa/Long Ridge) is larger and energy-dependent

average difference: $\langle \Delta \rangle = (2.9 \pm 2.7 \text{ (stat.)} \pm 18 \text{ (syst.)}) \text{ g/cm}^2$

Summary

 $\langle X_{\max}^{\text{TA}} \rangle < \langle X_{\max}^{\text{Auger}} \rangle$ for almost all energies agreement within (stat + sys) errors

 $\sigma(X_{\max}^{TA}) > \sigma(X_{\max}^{Auger})$ for lg(E/eV) = 18.6 - 19.0

Further required steps

Understand differences between Black Rock Mesa/Long Ridge and Middle Drum data

Analyze the differences between TA and Auger in $\sigma(X_{max})$

Take into account difference in energy scales of Auger and TA

Take into account systematic errors on nuclei fractions in AugerMix

Produce EPOS-LHC simulations for TA

backups

Auger X_{max} moments from PRD (2014) and ICRC (2017)

Auger X_{max} moments vs MC predictions

Auger: mass composition from fits of X_{max} distributions

Auger-TA working group on mass composition

TA Black Rock Mesa/Long Ridge $\langle X_{max} \rangle$

Auger X_{max} resolution and systematic uncertainties

Auger, PRD 90 (2014) 122005

TA data – proton (QGSJet-II.04) TA $\langle X_{max} \rangle$ is shifted within systematic errors: +17.4 g cm⁻² for all energies

 $\langle X_{\rm max}\rangle$ and $\sigma(X_{\rm max})$

good agreement to TA for lg(E/eV) < 19.0

