

Multi-Messenger Astrophysics at Ultra-High Energy with the Pierre Auger Observatory

Jaime Alvarez-Muñiz for the Pierre Auger Collaboration

Dept. Particle Physics & IGFAE

University of Santiago de Compostela, Spain

Take-home message:

- The Pierre Auger Observatory is a key detector in the field of Multi-messenger Astrophysics at EeV energies.
- With Auger we can:
 - **discriminate** photons & v in the background of charged CR at EeV energies,
 - with large identification efficiency (50% photons, > 85% neutrinos),
 - with **good angular resolution**: 2.5°...0.5° improving with energy and zenith angle (< 0.5° for θ > 60° and E > 3 EeV),
 - monitor continuously a large fraction of sky (-80° to 60° in equatorial declination),
 - with unrivalled sensitivity to transient sources if located at "right" position in the sky

UHE neutrinos in Auger

Data in this work: 1 January 2004 - 30 June 2018*

* ≈ 14.5 years of operation * ≈ 9.5 "full Auger" equivalent years

Search for UHE neutrinos with Auger Surface Detector

Searching for neutrinos ⇒ searching for **inclined showers** with **electromagnetic component**

 Protons & nuclei initiate inclined showers high in the atmosphere =>

Shower front at ground mainly composed of muons

(electromagnetic component absorbed in atmosphere).

 Neutrinos can initiate "deep" showers close to ground =>

Shower front at ground:

electromag. + muonic components

Identifying neutrinos in data collected at Auger Surface Detector

From the observational point of view, signals due to electrom. component are extended in time:

Induce <u>Time-over-Threshold</u> (ToT) • triggers in the SD stations

and/or

Have large Area-over-Peak (AoP) • value (AoP \sim 1 muonic front)

Searching for neutrinos \Rightarrow Searching for inclined showers with stations with large values of Area-over-Peak

Trace signal from electromag. component

Definition of Area-over-Peak (AoP)

Sensitivity to all flavours & channels in Auger

Data unblinding: Earth-Skimming channel

No neutrino candidates in the Earth-Skimming channel Large v-selection efficiency => sensitivity dominated by exposure, NOT by background

Unblinding: Downward-going (75° < θ < 90°) channel

Distribution of Fisher polynomial value: events with $7 \le N_{\text{stations}} \le 11$

No neutrino candidates in Downward-going (75° < θ < 90°) channel for any number of stations Large v-selection efficiency => sensitivity dominated by exposure, NOT by background

Unblinding: Downward-going ($60^{\circ} < \theta < 75^{\circ}$) channel

No neutrino candidates in Downward-going ($60^{\circ} < \theta < 75^{\circ}$) channel Large v-selection efficiency => sensitivity dominated by exposure, NOT by background

Limits to diffuse fluxes of UHE neutrinos

Auger exposure to diffuse flux of UHE neutrinos

Sensitivity dominated by Earth-Skimming tau neutrino channel alone up to $E \simeq 4 \times 10^{19}$ eV when **Downward-going** channels take over

Differential limits to diffuse flux of UHE neutrinos

energy

Auger integrated limit to diffuse flux of $\mathsf{UHE}\nu$

Expected event rates in Auger

With Auger we are starting to constrain models of cosmogenic v production assuming **protons** dominate at sources & Star-Formation Rate (**weak**) evolution with redshift z

Auger constraints on sources of UHECR

17

Point-like sources of UHE neutrinos (steady & transient)

UHE neutrinos:

Time per day a source is visible in the field-of-view of Earth-Skimming & Downward-going neutrino channels as a function of source declination

Limits to point-like & steady neutrino sources

Broad range in declination where v can be efficiently identified with Auger: two "sweet" spots around declinations -55° and +55°

IceCube, Astrophys.J. 835, 151 (2017) ANTARES, PRD 96, 082001 (2017)

v flux/limits from Blazar TXS 0506 + 056 (dec ~ 5.7°)

First upper limits to the neutrino flux from TXS 0506+056 at EeV energies

v flux/limits from Blazar TXS 0506 + 056 (dec ~ 5.7°)

IceCube, Science 361, 147 (2018). P. Padovani et al. MNRAS 480, 192 (2018)

Instantaneous effective area A_{eff}: sensitivity to transient sources

$$\dot{N}_{\nu} = \int d\Omega \int_{0}^{\infty} dE A_{\rm eff}(E, \Omega) \times F_{\nu}(E_{\nu}, \Omega)$$

Large area of SD of Auger => unrivalled sensitivity to transient point-like sources at EeV (as long as source is located in sky in the FoV of Earth-Skimming channel.

Follow-up of GW170817 Binary Neutron Star Merger + short GRB

The NS-NS merger was in an **optimal position** for the detection of UHE tau neutrinos from Auger at the instant of emission of GW170817

Limits to v from Binary NS-NS event GW170817: ANTARES, Auger & IceCube

- Neutrino limits based on nonobservation in ± 500 sec & +14 days-time windows
- Lack of neutrino detection consistent with expectations from a short GRB viewed at a large off-axis angle ≥ 20° (in agreement with LIGO/Virgo & GRB observations)

Limits to Binary Black Hole mergers: GW151226

Skymap (equatorial coords.):

- Localization of GW151226
- field-of-view of Auger in inclined directions at instant GW151226 occurred

Pierre Auger , PRD 94, 122007 (2016)

GW151226 Single flavor v_e : v_{μ} : $v_{\tau} = 1 : 1 : 1$ neutrinos (solar masses) 10⁵⁷ -Pierre Auger energy limit $D_{GW} = 440$ Mpc radiated in UHE neutrinos (erg) $D_{GW} = 440 + 180$ Mpc $D_{GW} = 440 - 190$ Mpc - 10² 90% CL declination GW151226 10⁵⁶ Energy radiated in GW - 10¹ 1055 radiated in UHE - 10⁰ 10^{54} Energy Energy 10^{-1} Northern sky Southern sky 10⁵³ -90 -45 - 30 - 1515 30 45 60 75 -75 -60 0 90 Declination δ (deg)

Limits to energy emitted in the form of UHEv from non-observation of v candidates in Auger 1 day after GW151226:

- Less than a few solar masses in the form of neutrinos.
- Compatible with expectations of absence of v production in "naked" BH-BH mergers.

UHE photons in Auger

Search for UHE photons with Auger FD + SD

 γ -induced showers have deeper X_{max} and less muons than proton showers =>

- Steeper Lateral Distribution at ground.
- Less triggered stations

M. Niechciol for the Pierre Auger Collab. PoS (ICRC 2017) 517

Multivariate analysis using:

 $X_{\text{max}}\text{, }N_{\text{stations}}\text{ and }S_{\text{b}}$

- 50% γ-selection efficiency
- 3 events above cut

(compatible with background expectations)

Limits to diffuse flux of UHE photons

- "top-down" models of UHECR production severely constrained
- Constraints on optimistic cosmogenic fluxes assuming 100% protons at sources

Limits to point-like & steady sources of UHE γ

Multi-variate analysis using hybrid data (X_{max}, ...) to select enriched samples of photon-like events

Hybrid data: Jan. 2005 – Sept. 2011 0.2 EeV < E < 3 EeV

Pierre Auger, Astrophys. J. 789, 160 (2014)

- No significant excess of γ -like events from **any point in sky** => **upper limits** ٠
- Upper limits compatible with: ٠
 - Sources are extragalactic & farther than \sim 5 Mpc (photons absorbed)
 - Sources are Galactic but transient and/or beamed (beam NOT pointing to us)
 - Sources have a small optical depth (small photon production efficiency)

See Pierre Auger, Astrophys. J. Lett. 837, L25 (2017) for photon limits to targeted sources

AMON: Astrophysicsl Multimessenger Observatory Network

- Auger sends all vertical events with energy ≥ 3 EeV to AMON with the goal of real-time coincidence analysis with IceCube, HAWC, etc...
- 2 or more events observed within 100 s and < 3 deg. generate an AMON alert for other AMON-partner observatories to follow-up on.

https://www.amon.psu.edu/

Summary & Conclusions:

- 1. With the Pierre Auger Observatory we are contributing to **Multi-Messenger Astrophysics at EeV energies** using photons & neutrinos.
- 2. Updated search for UHEv in Auger data up to 30 June 2018 **NO candidates**
- 3. Competitive photon & v diffuse flux limits: constraining sources of UHECR.
- 4. Sensitivity to UHE ν in a large fraction of sky from -80° to 60° in equatorial declination that is being monitored continuously.
- 5. First upper limits to the neutrino flux from **TXS 0506+056 at EeV energies.**
- **6. Unrivalled sensitivity to transient sources** if located at the right position in the sky: e.g. GW170817 BNS merger.

More information

AugerPrime

- **Upgrade** of Pierre Auger Observatory:
- Instrument water-Cherenkov stations

with $\sim 4 \text{ m}^2$ scintillators on top:

- ✓ 3x faster sampling of signal traces
- \checkmark ~ 2x better timing (5 ns accuracy)
- ✓ 32x larger dynamic range (small PMT)
- ✓ lower energy trigger threshold.

- Engineering array (12 stations) working since 2016
- Goal: Improve muon/electromagnetic separation in showers
 - Improve composition p/Fe determination on a shower-by-shower basis
 - Enhance **photon/proton** discrimination power.
 - Good also for neutrino searches work in progress...
 - New triggers => Lower energy threshold => enhance sensitivity in the 0.1 EeV energy range
 - Enhanced neutrino/proton discrimination: Deep neutrino showers have a large electrom. content

D. Martello, Pierre Auger Collab. PoS (ICRC2017) 383 See also A. Castellina's talk on Friday at 9:20 am

Search for UHE γ with Auger SD-only

Targeted sources of UHEγ: Galactic Center

- Connection of Auger limits on γ from Galactic Center to measurements at TeV energy
 Auger limit constrains allowed parameter space for extrapolation of HESS data:
- Auger limit constrains allowed parameter space for extrapolation of HESS data An upper limit on the cutoff energy of 2 EeV can be placed.

Selection of inclined showers: 3 observables

Earth-Skimming $(90^\circ, 95^\circ)$	Down-going High $(75^\circ, 90^\circ)$	Down-going Low $(65^{\circ}, 75^{\circ})$
L/W > 5	L/W > 3	_
$\langle V \rangle \in (0.29,~0.31) \; \mathrm{m \; ns^{-1}}$	$\langle V \rangle~<~0.313~{ m m~ns^{-1}}$	—
$RMS(V) < 0.08 \text{ m ns}^{-1}$	$\mathrm{RMS}(V)/\langle V \rangle < 0.08$	—
_	$\theta_{ m rec} > 75^{\circ}$	$\theta_{\rm rec} \in (58.5^{\circ}, 76.5^{\circ})$

Unblinding: Downward-going (75° < θ < 90°) channel

Unblinding: Downward-going (75° < θ < 90°) channel

39

Unblinding: Downward-going ($60^{\circ} < \theta < 75^{\circ}$) channel

PRELIMINARY

Systematic uncertainties: v limits

Fractional contribution of channels to the expected neutrino event rate:

Earth-skimming \rightarrow 84% Downward-going \rightarrow 16%

Source of systematic	Combined uncertainty band
Simulations	~+4%, -3%
ν cross section and τ E-loss	$\sim +34\%, -28\%$
Topography	$\sim +15\%, 0\%$
Total	$\sim +37\%, -28\%$

Uncertainties incorporated in the limit following the well-known Conrad approach.

Auger Collaboration Phys. Rev. D 91, 092008 (2015) Limits to Centaurus A (dec $\sim -43^{\circ}$)

Limits to Binary Black Hole mergers: GW150914

radiated in UHE neutrinos (solar masses)

Limits to Binary Black Hole mergers: GW170104

