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Extragalactic radiation backgrounds

• Radiation backgrounds fill the universe from the lowest to the highest energies.

arXiv:1406.0441
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Origin of radiation backgrounds

Known source populations

Sources too faint to be resolved.Diffuse radiation

Hubble deep field
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Extragalactic gamma rays and cosmic rays

• UHECR interact with radiation 
backrounds during propagation
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Extragalactic gamma rays and cosmic rays
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Extragalactic Gamma-ray Background (EGB) constrains UHECR propagation 
and interaction! 
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The gamma-ray sky observed by Fermi LAT
Fermi LAT, 4-year sky map, E > 1 GeV
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The gamma-ray sky observed by Fermi LAT
Fermi LAT, 4-year sky map, E > 1 GeV

Resolved sources

Inverse Compton                       π0-decay

Bremsstrahlung

Galactic diffuse emission 
(CR interactions with the interstellar medium)

Isotropic diffuse 
emission (IGRB)



!7

Derivation of the extragalactic background
Masked regions: 
• Galactic plane  
• Regions with dense molecular clouds 
• Regions with non-local  

atomic hydrogen clouds
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Isotropic and total extragalactic background
Intensity that can be resolved into 
sources depends on: 

• the sensitivity of the instrument. 

• the exposure of the observation. 

• The IGRB depends on the sensitivity 
to identify sources. 

• Important as an upper limit on 
diffuse processes.
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Isotropic and total extragalactic background
Intensity that can be resolved into 
sources depends on: 

• the sensitivity of the instrument. 

• the exposure of the observation. 

• The IGRB depends on the sensitivity 
to identify sources. 

• Important as an upper limit on 
diffuse processes.

Resolved sources
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+
Total extragalactic γ-ray background (EGB)

• The total EGB is instrument and 
observation independent. 

• Useful for comparisons with source 
population models.
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The IGRB spectrum

• IGRB spectrum can be parametrized by single power-law + exponential cutoff. 

• Spectral index ~ 2.3 , cutoff energy ~ 250 GeV. 

• It is not compatible with a simple power-law (χ2 > 85).

• Error bars:
statistical error 
+ syst. error from effective 

area parametrization
+ syst. error from CR 

background subtraction

• Yellow band:  
systematic uncertainties 
from foreground model 
variations.
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The total EGB spectrum
• Sum of the intensities of IGRB and the resolved high-latitude sources. 

• Contribution of high-latitude Galactic sources << 5%. 

• Spectrum can be parametrized by power-law with exponential cutoff. 

• Spectral index ~ 2.3, cutoff energy ~ 350 GeV.
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IGRB and total EGB in comparison
• Comparison for baseline diffuse model. 

• 2FGL resolved sources and IGRB have similar intensities above 100 GeV 

• Main differences to Abdo et al. 2010: Improved diffuse foreground and CR 
background models. 
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The X-ray and gamma-ray background

• Cosmic X-ray and gamma-ray background measured over 9 orders of magnitude 
in energy. 

• Challenging to improve EGB measurement: Limited by foreground systematics



The origin of the  
𝜸-ray background 
above 100 MeV
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The high-latitude gamma-ray sky

Only few populations in the extragalactic sky  
Most high-latitude sources are Blazars 
Transients are not in this catalog (GRBs)

Acero et al., ApJS, 2015

3FGL catalog 
based on 4 
years of LAT 
observations

sources

Blazars 1591
other AGN 32

star-forming 
galaxies 7

Unassociated ~ 600
Pulsars 72
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The high-latitude gamma-ray sky

Only few populations in the extragalactic sky  
Most high-latitude sources are Blazars 
Transients are not in this catalog (GRBs)

Acero et al., ApJS, 2015

3FGL catalog 
based on 4 
years of LAT 
observations

sources

Blazars 1591
other AGN 32

star-forming 
galaxies 7

Unassociated ~ 600
Pulsars 72

Few source classes dominate the extragalactic gamma-ray sky 
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The origin of the EGB
Sources
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Why is this important ?
! The Extragalactic Gamma-ray Background may encrypt the signature of the

most powerful processes in astrophysics

Blazars contribute
20-100% of the
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Blazars
• Dominant class of extra-galactic 

GeV / TeV sources. 

Radio galaxies
• ~ 30 sources resolved by LAT
• Less luminous but more 

abundant than Blazars 

Star-forming galaxies
• Only few galaxies resolved in 

GeV band. 
• Large number of sources → 

significant EGB contribution. 

GRBs + High-latitude 
pulsars
• Small contributions expected. 
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Intergalactic shocks
• Widely varying predictions of EGB 

contribution ranging from 1% to 
100%.

Dark matter annihilation
• Potential signal dependent on 

nature of DM, cross-section and 
structure of DM distribution. 

Interactions of UHE cosmic 
rays with the EBL
• Strongly dependent on evolution 

of UHECR sources.
• 1% - 100% of EGB emission.

Isotropic Galactic 
contributions 
• Contributions from an extremely 

large Galactic electron halo.
• CR interaction in small solar 

system bodies.
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Is the EGB galactic ?

• Unresolved Pulsars account for only a tiny fraction of the EGB

Calore et al. 2014
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Counting the LAT blazars
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Counting the LAT blazars

Ajello et al., ApJ, 2015

Redshift distribution

Spectral index 
distribution

Source counts Source counts  
above 10 GeV
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The contribution of Blazars to the EGB
• Blazars dominate the EGB above 10 GeV 

• Observed cutoff shape consistent with EBL absorption of Blazar emission

Ajello et al., ApJ, 2015
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Anisotropies in the IGRB

Fornasa et al. 2016

• Angular power spectrum consistent 
with being Poissonian 

• Energy dependence of anisotropy 
suggests spectral break around 2 GeV
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Anisotropies expected in the IGRB

• Observed anisotropy consistent with expectations from Blazars

di Mauro et al., 2014
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Contributions from star-forming galaxies

• Now 10 galaxies detected by the LAT  

• Almost linear correlation between 
gamma-ray luminosity and tracers of 
star formation  

• Detections + upper limits can be 
used to constrain correlation  

• Use gamma-ray / IR luminosity 
correlation to calculate EGB 
contribution based on IR luminosity 
function of galaxies.

Milky Way M 82 NGC 253SMCLMC M 31 NGC 1068 NGC  4945

Ackermann et al., ApJ 755, 164, 2012
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Contributions from star-forming galaxies

Ackermann et al., ApJ 755, 164, 2012

(1)

(2)

• 4% - 23% contribution to EGB from star-forming galaxies (0 < z < 2.5) 

• Two scenarios for gamma-ray spectrum: (1) rescaled Milky Way or (2) power-law 
spectrum observed for Starburst Galaxies 

• Similar technique can be applied to estimate contributions from misaligned AGN 
(Radio-gamma correlation, e.g., Inoue 2011)
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A census of the different contributions

• Known extragalactic gamma-
ray source populations can fully 
explain the observed IGRB/EGB. 

• But uncertainties are generally 
large. 

• Energy range around 100 GeV is 
constrained best due to strong 
contribution from Fermi Blazars 

• There is potential for (some) 
diffuse contributions from cosmic 
rays, DM, etc…

IGRB 

Di Mauro & Donato, PRD , 2015 

EGB 
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Constraints on contributions from Dark Matter

• IGRB constrains DM contribution 
from Galactic halo and from  
extragalactic DM annihilation

Di Mauro & Donato, PRD , 2015 

Di Mauro & Donato, PRD , 2015 

• Large uncertainties on 
extragalactic contribution  
due to unknown sub-halo mass 
function
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Extending the IGRB measurement to TeV ?

Inoue & Tanaka, ApJ, 2016

Sources detected  
in TeV

Upper limit from cascade  
emission in the  
GeV band

• Lower limit from counting TeV detected sources. 

• Upper limit from requirement that the cascade emission is not higher than 
observed GeV background.
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CTA and the IGRB 

CR electrons

EGB

2-3 orders of magnitude

• Cherekov telescopes have very 
limited e / gamma separation. 

• CR electron background 
dominates by at least two orders 
of magnitude. 

• CTA can only observe close-by 
TeV sources and potentially 
small-scale anisotropies.
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From the IGRB to the INB
astrophysical 
neutrino fluxInoue & Tanaka, ApJ, 2016

IceCube

• Neutrinos give us an unobscured view of the TeV-PeV universe
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Summary

• The IGRB spectrum between 100 MeV and 820 GeV can be described by a simple 
power-law of index ~2.3 with an exponential cutoff at ~250 GeV. 

• The shape of the cutoff is compatible with expectations due to absorption of the 
gamma-rays in the extragalactic background light and a single dominating 
population. 

• Uncertainty in diffuse foreground modeling is the largest systematic 
uncertainty for the IGRB measurement. 

• The observed EGB can be explained by the emission of unresolved sources. 

• Diffuse radiation (UHECR, DM) can only contribute a small fraction. 

• Neutrinos are the messenger of choice to measure non-thermal emission beyond 
few TeV
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Backup
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Derivation of the extragalactic background

=
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Solar disk and IC
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Resolved sources (2FGL)

+
Isotropic emission

!Ackermann!et!al.!2012,!ApJS,!203,!4!
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Galactic diffuse foreground model
• GALPROP code used to produce template maps for diffuse Galactic emission. 

• Baseline model: CR injection/propagation scenario as in Ackermann et al. 2012 

• Intensity is derived from fit to LAT data in each energy band. 

Interstellar gas

Inverse Compton (IC)



!31

Galactic diffuse foreground model
• GALPROP code used to produce template maps for diffuse Galactic emission. 

• Baseline model: CR injection/propagation scenario as in Ackermann et al. 2012 

• Intensity is derived from fit to LAT data in each energy band. 

Interstellar gas

Inverse Compton (IC)

Spectral shape 
predicted 
by GALPROP 
model

Spectral shape 
from fit to LAT data


