The Cosmic Ray Energy Spectrum between 2 PeV and 2EeV Observed with the TALE Detector in Monocular Mode.

Tareq Abu-Zayyad
(University of Utah)
Currently visiting Jerusalem for the TA Collab.

Presented by Charlie Jui
Oct 9, UHECR 2018
Paris, France

Tareq’s son Ziad from Jerusalem, Oct 8
Telescope Array collaboration

aHigh Energy Astrophysics Institute and Department of Physics, University of Utah, Salt Lake City, Utah, USA, bUniversity of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi, Japan
cGraduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan, dDepartment of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea
eDepartment of Physics, Tokyo University of Science, Noda, Chiba, Japan, fDepartment of Physics, Kinki University, Higashi Osaka, Osaka, Japan, gDepartment of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea, hInstitute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan, iGraduate School of Science, Osaka City University, Osaka, Osaka, Japan, jInstitute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan
kKavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Chiba, Japan
lGraduate School of Science and Engineering, Saata University, Saitama, Japan, mDepartment of Physics and Astronomy, Rutgers University, Piscataway, USA, nDepartment of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan
oInstitute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia, pAdvanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan,
qDepartment of Physics, Chiba University, Chiba, Japan, rDepartment of Astronomy and Space Science, Chungnam National University, Yuseong-gu, Daejeon, Korea
sDepartment of Physics and Institute for the Early Universe, Ewha Womans University, Seodaemun-gu, Seoul, Korea, tYukawa Institute for Theoretical Physics, Kyoto University, Saky, Kyoto, Japan
uGraduate School of Science, Kochi University, Kochi, Kochi, Japan, vGraduate School of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
wUniversity of Bruxelles, Brussels, Belgium

Oct 09, UEHC
TA Low Energy Extension (TALE)

10 new telescopes to look higher in the sky (31-59°) to see shower development to much lower energies

Infill surface detector array of more densely packed surface detectors (lower energy threshold)
• All 10 TALE FD telescopes installed in 2013.
 – Shake-down 2013-2014
 – Stable operation since fall 2014
• 103 TALE SD counters deployed as of fall 2017
TALE Fluorescence Detector

- 10 high-elevation telescopes at the Middle Drum site, looking from 31°-59° in elevation.
- Originally designed for monocular and hybrid observations down to $\sim 10^{16.5}$ eV.

Expected TALE hybrid events per year
Combined Tim-Profile Fit

Shower Profile

- Signal
- MC Fit
- Scin
- Rayl
- Aero
- Cher

log₁₀(E) = 20.
Χ_max = 764.
N_max = 8.44e+6

From Top of Atmosphere

Slant Depth X

Oct 09, UEHCR 2018
For TALE FD reconstruction: we combined the time and profile fit: simultaneous Profile Constrained Geometry Fit (PCFG) originally developed for HiRes monocular analysis.

TALE FD Event

\[\chi^2 / \text{ndf} = 6.561 / 65 \]
\[T_0 = -10.28 \pm 0.5691 \]
\[R_p = 7435 \pm 352.1 \]
\[\psi = 55.58 \pm 4.237 \]

\[\log_{10}(E) = 17.88 \]
\[\chi_{\text{Max}} = 752.86 \]
\[N_{\text{Max}} = 4.87 \times 10^8 \]
TALE Cherenkov Event

PCGF turns out to work very well on Cherenkov light dominated events

Shower Profile

\[\chi^2 / \text{ndf} \quad 62.80 / 46 \]
\[\log_{10}(E) \quad 17.50 \]
\[X_{\text{Max}} \quad 538.55 \]
\[N_{\text{Max}} \quad 2.16 \times 10^8 \]
Cherenkov light dominated events allowed TALE to reach more than another decade lower in energy than designed: Down to $10^{15.3}$ eV
Events

Between June 2014 and March 2016 TALE collected
220 173 events between $10^{15.5}$ and $10^{16.0}$ eV
98 677 events between $10^{16.0}$ and $10^{16.5}$ eV
23 285 events between $10^{16.5}$ and $10^{17.0}$ eV

Cherenkov dominated events (C'kov > 75% of total)

Fluorescence dominated events (Scin. > 75% of total)

Mixed signal events
Verification of monocular Ψ resolution

Čerenkov

$logE>16.5$

Čerenkov

TALE Č'kov mono - hybrid psi comparison

Čerenkov

Mono – hybrid (w/ 16 SD)
Exposure

- TALE FD data collected from 06/20/2014 to 03/31/2016 (22 months).
- Only good weather data:
- **Total on-time 1080.0 hours.**
Composition?

Initial Assumption

primary fractions (H4a CR composition model)

- proton
- helium
- CNO
- MgSi
- Iron

Originally assumed H4A Composition (interpreted using QGS_jet II.3) gives an Xmax distribution appeared to be too high in the sky.

Adjusted Xmax dist. (a 4-component fit to QGS-Jet II.3) to better match TALE FD data: call this Tale Xmax Fit (TXF)
MC/Data Comparison

Validation of Aperture Calculation

Impact parameter: R_p (km) (data)

Čerenkov

Mixed

Fluorescence

Zenith Angle: θ

H4A

TXF
Consistency

Spectra obtained from the three classifications of events appear to be consistent
TALE Spectrum

break point 17.04 ± 0.03

break point 16.22 ± 0.02

slope: -3.12 ± 0.01 -2.92 ± 0.01 -3.19 ± 0.02

fit $\chi^2 / \text{ndf} = 31.6 / 39$
TALE Spectrum

Break point: 17.04 ± 0.03

Break point: 16.22 ± 0.02

Slope: -3.12 ± 0.01
Slope: -2.92 ± 0.01
Slope: -3.19 ± 0.02

$\chi^2 / \text{ndf} = 31.6 / 39$

Oct 09, UEHCR 2018
Comparison to other experiments

TALE Spectrum compared to some recent Measurements

- TALE Monocular (2017)
- Yakutsk-Cherenkov (2013)
- Tunka-55 (2013)
- Tunka-133 (2013)
- KASCADE-Grande (2012)
- ICETOP (2016)
Summary

• We have measured the cosmic ray energy spectrum in the range $10^{15.3}-10^{18.3}$ eV
 – Published 2018 September 24. The Astrophysical Journal, Volume 865, Number 1
 – Three spectral features are seen: Knee, “dip”, “second knee” at energies at $10^{15.6}$ eV, $10^{16.22}$ eV and $10^{17.04}$ eV
 – The energies of the three features are approximately in the ratio of 1:4:26 (proton: beryllium: iron)

• Composition results in the near future

• TALE surface detector now operational
 – FD to SD trigger now running
Reserve Slides
Systematic Errors

Table 5. Estimates of systematic uncertainties in the TALE FD energy scale and spectrum measurement. This uncertainty is approximately constant as a function of energy. [Explanation of change: Added entry: Cherenkov model]

<table>
<thead>
<tr>
<th>Energy</th>
<th>Source</th>
<th>Value</th>
<th>Contribution to Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>$< 10^{17}$ eV</td>
<td>photonic scale</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>$< 10^{17}$ eV</td>
<td>missing energy</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>$< 10^{17}$ eV</td>
<td>atmosphere</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$< 10^{17}$ eV</td>
<td>Cherenkov model</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>$< 10^{17}$ eV</td>
<td>fluorescence yield</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$< 10^{17}$ eV</td>
<td>composition (X_{max})</td>
<td>3%</td>
<td>6%</td>
</tr>
<tr>
<td>10^{18} eV</td>
<td>photonic scale</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>10^{18} eV</td>
<td>missing energy</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>10^{18} eV</td>
<td>atmosphere</td>
<td>2%</td>
<td>4%</td>
</tr>
<tr>
<td>10^{18} eV</td>
<td>Cherenkov model</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10^{18} eV</td>
<td>fluorescence yield</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>10^{18} eV</td>
<td>composition (X_{max})</td>
<td>3%</td>
<td>6%</td>
</tr>
<tr>
<td>$< 10^{17}$ eV</td>
<td>total</td>
<td>15%</td>
<td>31%</td>
</tr>
<tr>
<td>10^{18} eV</td>
<td>total</td>
<td>15%</td>
<td>31%</td>
</tr>
</tbody>
</table>
Outline

• Introduction to TALE
• TALE Events and Reconstruction
• Detector Resolutions
• Aperture and Data/MC Comparisons
• Spectrum
• Interpretation of Spectrum
• Continuing work on TALE FD and SD
“Reconstruction” of an air shower

Event Display showing pattern of hit pixels

Direction of hit pixels fitted to a shower-detector plane (SDP)
Arrival times of signal light in each pixel is fitted as a function of the SDP θ angles: **Gives direction of primary cosmic ray**

\[t_i = t_0 + \frac{R_P}{c} \tan \frac{\theta_i}{2} \]
SDP θ angles converted to slant depth.
Light signal fitted to depth to give energy E and X_{max} (depth of maximum)
TA Energy Spectrum

TALE Spectrum with Spectra of TA-SD and Auger (Rescaled Energy)

$E^3 J \left[\text{eV}^2 \text{m}^{-2} \text{sr}^{-1} \text{s}^{-1} \right]$

$\log_{10}(E/\text{eV})$

- TALE Monocular (2017)
- TA BR/LR Monocular (2015)
- TA SD 7 year (ICRC 2015)
- Auger (2013) Rescaled +10%
Dependence on Xmax Distribution

- blue: iron
- green: H4a + HiRes/MIA
- black: TXF
- red: proton
Reconstruction Resolution (1/2)

Ψ Angle

Čerenkov

logE>16.5

Čerenkov

Mixed

Fluorescence

RP

Čerenkov

logE>16.5

Čerenkov

Mixed

Fluorescence

Oct 09, UEHCR 2018
Reconstruction Resolution (2/2)

X_{MAX}

Čerenkov

$\log E > 16.5$

Čerenkov

Mixed

Fluorescence

Energy

Čerenkov

$\log E > 16.5$

Čerenkov

Mixed

Fluorescence

Oct 09, UEHCR 2018
TALE “Infill” Surface Detector

- Construction and deployment funded by the Gov’t of Japan
- Add infill array (400m and 600m spacing) for hybrid and stand-alone observation.
- Also add counters to build out main TA SD array (1200m separation).
TALE Deployment: Summer 2017

- 103 counters are in place as of fall, 2017
- TALE SD is in shake-down mode
event duration (µs) (data)

Entries 392758
Mean 0.2228
RMS 0.118
event duration (μs) (data)

- Entries: 3726
- Mean: 1.416
- RMS: 0.7152
Figure 13: Total event duration (µs), for Cherenkov (left), Mixed (center), and fluorescence events (right). Black points are data, blue / red histograms are MC with mixed composition (H4a / TXF respectively).
Tracklength (deg) (data)

Entries 392758
Mean 8.642
RMS 2.6
Figure 14: Angular track-length (deg), for Cherenkov (left), Mixed (center), and fluorescence events (right). Black points are data, blue / red histograms are MC with mixed composition (H4a / TXF respectively).
Figure 19: Ratio of calorimetric energy to total shower energy as given by Conex simulations. Simulation sets of mono-energetic showers were used to calculate the ratio. Each point in the figure represents a simulation set and the curves represent a 4-th degree polynomial fit to the point.