

The Cosmic Ray Energy Spectrum between 2 PeV and 2EeV Observed with the TALE Detector in Monocular Mode.

Tareq Abu-Zayyad

(University of Utah) Currently visiting Jerusalem for the TA Collab.

Presented by Charlie Jui Oct 9, UHECR 2018 Paris, France

Tareq's son Ziad from Jerusalem, Oct 8

Telescope Array collaboration

T. Abu-Zayyad^a, R. Aida^b, M. Allen^a, R. Anderson^a, R. Azuma^c, E. Barcikowski^a, J.W. Belz^a, D.R. Bergman^a, S.A. Blake^a, R. Cady^a, B.G. Cheon^d, J. Chiba^e, M. Chikawa^f, E.J. Cho^d, W.R. Cho^g, H. Fujii^h, T. Fujii[†], T. Fukuda^c, M. Fukushima^{j,k}, W. Hanlon^a, K. Hayashi^c, Y. Hayashi[†], N. Hayashida^j, K. Hibino¹, K. Hiyama^j, K. Honda^b, T. Iguchi^c, D. Ikeda^{j,*}, K. Ikuta^b, N. Inoue^m, T. Ishii^b, R. Ishimori^c, H. Ito^u, D. Ivanov^{a,n}, S. Iwamoto^b, C.C.H. Jui^a, K. Kadota^o, F. Kakimoto^c, O. Kalashev^p, T. Kanbe^b, K. Kasahara^q, H. Kawai^r, S. Kawakamiⁱ, S. Kawana^m, E. Kido^j, H.B. Kim^d, H.K. Kim^g, J.H. Kim^a, J.H. Kim^d, K. Kitamoto^f, S. Kitamura^c, Y. Kitamura^c, K. Kobayashi^e, Y. Kobayashi^c, Y. Kondo^j, K. Kuramotoⁱ, V. Kuzmin^p, Y.J. Kwon^g, J. Lan^a, S.I. Lim[†], J.P. Lundquist^a, S. Machida^c, K. Martens^k, T. Matsuda^h, T. Matsuura^c, T. Matsuyama^j, J.N. Matthews^a, M. Minamino^j, K. Miyata^e, Y. Murano^c, I. Myers^a, K. Nagasawa^m, S. Nagataki^u, T. Nakamura^v, S.W. Nam[†], T. Nonaka^j, S. Ogio^j, M. Ohnishi^j, H. Ohoka^j, K. Oki^j, D. Oku^b, T. Okuda^w, M. Ono^u, A. Oshimaⁱ, S. Ozawa^q, I.H. Park[†], M.S. Pshirkov^x, D.C. Rodriguez^a, S.Y. Roh^S, G. Rubtsov^p, D. Ryu^S, H. Sagawa^j, N. Sakurai^j, A.L. Sampson^a, L.M. Scottⁿ, P.D. Shah^a, F. Shibata^b, T. Shibata^j, H. Shimodaira^j, B.K. Shin^d, J.I. Shin^g, T. Shirahama^m, J.D. Smith^a, P. Sokolsky^a, R.W. Springer^a, B.T. Stokes^a, S.R. Stratton^{a,n}, T. Stroman^a, S. Suzuki^h, Y. Takahashi^j, M. Takeda^j, A. Taketa^j, M. Takita^j, Y. Tsunesada^c, K. Tsutsumi^c, Y. Tsuyuguchi^b, Y. Uchihori^{ab}, S. Udo^j, H. Ukai^b, F. Urban^x, G. Vasiloff^a, Y. Wada^m, T. Wong^a, Y. Yamakawa^j, R. Yamane^j, H. Yamaoka^h, K. Yamazaki^j, J. Yang[†], Y. Yoneda^j, S. Yoshida^r, H. Yoshij^{ac}, X. Zhou^f, R. Zollinger^a, Z. Zundel^a

^a High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA, ^bUniversity of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi, Japan
^c Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan, ^dDepartment of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea
^e Department of Physics, Tokyo University of Science, Noda, Chiba, Japan, ¹Department of Physics, Kinki University, Higashi Osaka, Osaka, Japan, ²Department of Physics, Yonsei University, Seondaemun-gu, Seoul, Korea ^hInstitute
of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan, ¹Graduate School of Science, Osaka City University, Osaka, Osaka, Japan, ¹Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan
^kKavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Chiba, Japan, ¹Faculty of Engineering, Kanagawa University, Sotagaya-ku, Tokyo, Japan
^mThe Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan, ⁿDepartment of Physics and Astronomy, Rutgers University, Piscataway, USA, ^oDepartment of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan
^pInstitute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia, ^qAdvanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan,
^rDepartment of Physics, Chiba University, Chiba, Chiba, Japan, ⁵Department of Astronomy and Space Science, Chungnam National University, Yuseong-gu, Daejeon, Korea
^hDepartment of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea, ^uYukawa Institute for Theoretical Physics, Kyoto University, Sakyo, Kyoto, Japan
^y Faculty of Science, K

TA Low Energy Extension (TALE)

Infill surface detector

10 new telescopes to look higher in the sky (31-59°) to see shower development to much lower energies

• All 10 TALE FD telescopes installed in 2013.

2013/03/29

- Shake-down 2013-2014
- Stable operation since fall 2014
- 103 TALE SD counters deployed as of fall 2017

TALE Fluorescence Detector

Elev

50

40

30

20

- 10 high-elevation telescopes at the Middle Drum site, looking from 31°-59° in elevation.
- **Originally designed** for monocular and hybrid observations down to ~10^{16.5}eV.

Expected TALE hybrid events per year

TALE FD Event

For TALE FD reconstruction: we combined the time and profile fit: simultaneous **Profile Constrained Geometry Fit (PCFG)** originally developed for HiRes monocular analysis

TALE Cherenkov Event

PCGF turns out to work very well on **Cherenkov light dominated events**

TALE Cherenkov Event

Cherenkov light dominated events allowed TALE to reach more than another decade lower in energy than designed: Down to 10^{15.3} eV

Events

Oct 09, UEHCR 2018

0

Verification of monocular Ψ resolution

Exposure

- TALE FD data collected from 06/20/2014 to 03/31/2016 (22 *months*).
- Only good weather data:
- **Total on-time** 1080.0 hours.

22

20

run #

Aperture

Composition?

Initial Assumption

primary fractions (H4a CR composition model)

Comparison

Originally assumed H4A Composition (interpreted using QGS_jet II.3) gives an Xmax distribution appeared to be too high in the sky.

Adjusted Xmax dist. (a 4-component fit to QGS-Jet II.3) to better match TALE FD data: call this Tale Xmax Fit (**TXF**)

MC/Data Comparison

Validation of Aperture Calculation

Consistency

appear to be consistent

TALE Spectrum

Comparison to other experiments

Oct 09, ULHUK ZUIS

Summary

- We have measured the cosmic ray energy spectrum in the range 10^{15.3}-10^{18.3} eV
 - Published 2018 September 24.
 <u>The Astrophysical Journal</u>, <u>Volume 865</u>, <u>Number 1</u>
 - Three spectral features are seen: Knee, "dip", "second knee" at energies at 10.^{15.6}eVm 10^{16.22}eV and 10^{17.04}eV
 - The energies of the three features are approximately in the ratio of 1:4:26 (??? proton: beryllium: iron ???)
- Composition results in the near future
- TALE surface detector now operational
 FD to SD trigger now running

End

Reserve Slides

Systematic Errors

Table 5. Estimates of systematic uncertainties in the TALE FD energy scale and spectrum measurement. This uncertainty is approximately constant as a function of energy *[Explanation of change: Added entry: Cherenkov model]*

Energy	Source	value	contribution to spectrum
$<10^{17}~{\rm eV}$	photonic scale	10%	20%
$<10^{17}~{\rm eV}$	missing energy	10%	20%
$< 10^{17}~{\rm eV}$	atmosphere	0	0
$<10^{17}~{\rm eV}$	Cherenkov model	5%	10%
$<10^{17}~{\rm eV}$	fluorescence yield	0	0
$<10^{17}~{\rm eV}$	composition (X_{max})	3%	6%
$10^{18}~{\rm eV}$	photonic scale	10%	20%
10^{18} eV	missing energy	5%	10%
10^{18} eV	atmosphere	2%	4%
10^{18} eV	Cherenkov model	0	0
10^{18} eV	fluorescence yield	10%	20%
$10^{18}~{\rm eV}$	composition (X_{max})	3%	6%
$<10^{17}~{\rm eV}$	total	15%	31%
10^{18} eV	total	15%	31%

Outline

- Introduction to TALE
- TALE Events and Reconstruction
- Detector Resolutions
- Aperture and Data/MC Comparisons
- Spectrum
- Interpretation of Spectrum
- Continuing work on TALE FD and SD

"Reconstruction" of an air shower

Event Display showing pattern of hit pixels

Direction of hit pixels fitted to a shower-detector plane (SDP)

Timing Fit

Arrival times of signal light in each pixel is fitted as a function of the SDP θ angles: **Gives direction** of primary cosmic ray

Oct 09, UEHCR 2018

27

SDP θ angles converted to slant depth. Light signal fitted to depth to give energy E and Xmax(depth of maximum) Oct 09, UEHCR 2018

TA Energy Spectrum

Dependence on Xmax Distribution

Reconstruction Resolution (1/2)

R_P

Reconstruction Resolution (2/2)

Energy

 $\Delta E / E$ (total energy)

COPA

TALE "Infill" Surface Detector

- Construction and deployment funded by the Gov't of Japan
- Add infill array (400m and 600m spacing) for hybrid and stand-alone observation.
- Also add counters to build out main TA SD array (1200m separation).

TALE Deployment: Summer 2017

- 103 counters are in place as of fall, 2017
- TALE SD is in shake-down mode

OPA

Figure 13: Total event duration (μs), for Cherenkov (left), Mixed (center), and fluorescence events (right). Black points are data, blue / red histograms are MC with mixed composition (H4a / TXF respectively).

Figure 14: Angular track-length (deg), for Cherenkov (left), Mixed (center), and fluorescence events (right). Black points are data, blue / red histograms are MC with mixed composition (H4a / TXF respectively).

Figure 19: Ratio of calorimetric energy to total shower energy as given by Conex simulations. Simulation sets of mono-energetic showers were used to calculate the ratio. Each point in the figure represents a simulation set and the curves represent a 4-th degree polynomial fit to the point