Hadronic interaction studied by TA

p-Air and p-p cross section at vs=95TeV
Muon analysis

Takashi Sako (ICRR U. of Tokyo) for the Telescope Array Collaboration

UHECR 2018 in Paris

Brief reminder of TA

- Detectors
 - 507 SDs cover 700km²
 - 3 FD stations
- Full operation since May 2008 (10th anniversary!!)
- SD-FD Hybrid trigger and Hybrid analyses improve the geometry reconstruction
- Dataset used in this talk
 - Cross section : 5 years MD FD (hybrid)
 - Muon : 7 years SD

Cross section

Phys. Rev. D92, 032007 (2015)

Outline

- $\sigma_{\text{p-air}}$ at the highest energy
- Ideally, measurement of 1^{st} interaction point X₁, then determine λ_{p-air}
 - Difficult to observe
 - Mass composition
- Instead, distribution of of X_{max}
 - Well known observable
 - X_{max} tail => Λ_{p-air} => λ_{p-air} => σ_{p-air}
 - Tail represents proton
- "K-factor" method : $\Lambda_{p-air} = K \lambda_{p-air}$
- σ_{p-air} => σ_{p-p} through Glauber + BHS QCD inspired fit

K-factor method

- CORSIKA-CONEX comparison
 - CONEX : only 1-D shower
 - CORSIKA : 3-D shower + detector simulation + reconstruction
- Fitting deep X_{max} data, result is stable and consistent between CONEX and CORSIKA

Using QGSJET II-04 : No energy dependence in K-factor

K-factor (continued)

Model	K
QGSJETII.4	1.15 ± 0.01
QGSJET01	1.22 ± 0.01
SIBYLL	1.18 ± 0.01
EPOS-LHC	1.19 ± 0.01

Small model dependence (max-min)/mean = 0.06 => $\pm 3\%$

True λ vs. reconstructed λ through K-factor No reconstruction bias

Dataset used in TA analysis

- MD FD -SD hybrid (independent trigger, offline matching) => X_{max} resolution : ~23g/cm²
- May 2008 May 2013 (5 years)
- 439 events
- $E=10^{18.3}-10^{19.3} eV$, $\langle E \rangle = 10^{18.68} eV \sqrt{s_{NN}} = 95 TeV$

NOTE: Analysis using BR/LR FDs hybrid events on going (x5.7 events)

$\sigma_{p-air}^{inel} \ to \ \sigma_{p-p}^{tot}$

 $\sigma_{p-p}^{tot} - B$ relation based on a model (BHS QCD inspired fit)

"OK, on the extrapolation from low energy"

Only that?

9

Muons

Phys. Rev. D 98, 022002 (2018) Detail in poster by R. Takeishi

Muon problem

- Excess of number of muons compared to MC predictions (deficit in MC)
- Review in the next talk by Hans Dembinski
- Different sensitivities of TA SD and Auger tank to muon and EM

Method in TA analysis : muon purity

• Muon purity P

$$P = \frac{E_{\mu}}{E_{all}} = f(\theta, \phi, R)$$

is defined by MC but only a function of geometrical parameters

Dataset and MC

- Dataset
 - May 11, 2008 May 11, 2015 (7 years)
 - 18.8 < log₁₀(E_{FD}/eV) < 19.2
 - $E_{FD} = E_{SD}/1.27$
- MC
 - E : thrown (true) energy
 - Reference : QGSJET II-03 proton
 - MC : CORSIKA 6.960 (FLUKA2008.3C+EGS4), thinning + dethinning
 - Detector : GEANT4
 - 16.55 < log₁₀(E/eV) < 20.55
 - 0°<θ<60°
 - 0.05 accidental muons / station / \pm 32 μ s

Purity vs. R (MC: QGSJET II-03)

- 30°<θ<45°, 150°<φ<180°
- 2000m<R<4000m : high muon purity sample

Result 1 (data/MC vs. R)

- $N_{data}/N_{MC} > 1$ and increases with R
- N_{data}/N_{MC} => 1 @ R>4000m because BG dominates

Result 2 (model and mass dependences)

- Same trend with all models
- Same trend with Fe primary, but less excess

Result 3 (P dependence with various θ , ϕ)

- Large N_{data}/N_{MC} in the large P sample
- Energy scale uncertainty dominates the systematic. This error is correlated between data points.

Summary

- Cross section measurement
 - $\sigma_{p-air}^{inel} = (567.0 \pm 70.5[stat]^{+29}_{-25}[sys])$ mb is determined using MD station FD data
 - $\sigma_{p-p}^{tot} = 170_{-44}^{+48} [stat]_{-17}^{+19} [sys]mb$ is obtained using Glauber calculation and QCD model of $\sigma_{p-p}^{tot} B$ relation
 - Cross section and B are consistent with the most recent extrapolation from low energy
 - Ongoing analysis increases statistics x5.7
- Muon analysis
 - Signal excess w.r.t. MC is observed in high muon purity samples

=> indicating muon excess

• In other words, observed lateral distribution is not reproduced by MC simulations

Backup

K-factor method

Mean mass number of air

$$\Lambda_m = K\lambda_{p-\text{air}} = K \frac{4.45m_p}{\sigma_{p-\text{air}}^{\text{inel}}}$$

K-factor

- Experiment (Λ_m) and MC (K) are decoupled
- K is Model dependent
- K is determined by using CONEX

- CORSIKA-CONEX comparison
 - CONEX : only 1-D shower
 - CORSIKA : 3-D shower + detector simulation + reconstruction
- Fitting deep X_{max} data, result is stable and consistent between CONEX and CORSIKA

Glauber calculation

- Superposition of p-p amplitude (function of $\sigma^{\rm tot}_{\rm pp}$ and elastic slope B)
- Nucleon distribution function in a nucleus