Telescope Array search for ultra-high energy photons and neutrinos

G.I. Rubtsov, M. Fukushima, D. Ivanov, M.Yu. Kuznetsov,M.S. Piskunov, G. Thomson, S.V. Troitsky, Ya.V. Zhezherfor the Telescope Array Collaboration

UHECR 2018, Paris October 9, 2018

Telescope Array Collaboration

R.U. Abbasi¹ M. Abe¹³ T. Abu-Zayyad¹ M. Allen¹ R. Azuma³ E. Barcikowski¹ J.W. Belz¹ D.R. Bergman¹ S.A. Blake¹ R. Cady¹ M.J. Chae²⁰ B.G. Cheon⁴ J. Chiba⁵ M. Chikawa⁵ E.J. Cho⁴ W.R. Cho⁷ T. Fujii⁹
M. Fukushima^{10;11} T. Goto⁹ W. Hanlon¹ Y. Hayashi⁹ N. Hayashida¹⁰ K. Hibino¹² K. Honda² D. Ikeda¹⁰ N. Inoue¹³ T. Ishii² R. Ishimori³ H. Ito²⁷ D. Ivanov¹ C.C.H. Jui¹ K. Kadota¹⁵ F. Kakimoto³ O. Kalashev¹⁶ K. Kasahara¹⁷ H. Kawai¹⁸ S. Kawakam⁹ S. Kawana¹³ E. Kido¹⁰ H.B. Kim⁴ J.H. Kim¹ J.H. Kim⁴ S. Kitamura³ Y. Kitamura³
V. Kuzmin¹⁶ M. Kuznetsov¹⁶ Y.J. Kwon⁷ J. Lan¹ S.I. Lim²⁰ J.P. Lundquist¹ S. Machida³ K. Martens¹¹ T. Natsuda⁸ T. Matsuyama⁹ J.N. Matthews¹ M. Minamino⁹ Y. Mukai² I. Myers¹ K. Nagasawa¹³ S. Nagataki²¹ T. Nakamura²²
T. Nonaka¹⁰ A. Nozato⁶ S. Ogio⁹ J. Ogura³ M. Ohnishi¹⁰ H. Ohoka¹⁰ K. Oki¹⁰ T. Okuda²³ M. Ono³⁰ A. Oshima⁹ S. Ozawa¹⁷ I.H. Park²⁰ M.S. Pshirkov²⁴ D.C. Rodriguez¹ G. Rubtsov¹⁶ D. Ryu¹⁹ H. Sagawa¹⁰ N. Sakurai⁹
L.M. Scott¹⁴ P.D. Shah¹ F. Shibata² T. Shibata¹⁰ H. Shimodaira¹⁰ B.K. Shin¹⁰ J.D. Smith¹ P. Sokolsky¹
R.W. Springer¹ B.T. Stokes¹ S.R. Stratton^{1;14} T. Stroman¹ T. Suzawa¹³ M. Takamura⁵ M. Takeda¹⁰ A. Taketa²⁵ M. Takita¹⁰ Y. Tameda¹⁰ H. Tanaka⁹ K. Tanaka²⁶ M. Tanaka⁹ S.B. Thomas¹ G.B. Thomson¹ P. Tinyakov^{24;16}
I. Tkachev¹⁶ H. Tokuno³ T. Tomida²⁷ S. Troitsky¹⁶ Y. Tsunesada³ K. Tsutsum³ Y. Uchibnri²⁸ S. Udo¹² F. Urban³¹ H. Yoshii²⁹ Ya. Zhezher¹⁶ R. Zollinger¹ Z. Zundel¹

 ¹ University of Utah ² University of Yamanashi ³Tokyo Institute of Technology ⁴Hanyang University ⁵Tokyo University of Science ⁶Kinki University ⁷Yonsei University ⁸KEK ⁹Osaka City University ¹⁰University of Tokyo (ICRR)
 ¹¹ University of Tokyo (Kavli Institute) ¹²Kanagawa University ¹³Saitama University ¹⁴ Rutgers University ¹⁵Tokyo City University, ¹⁶Russian Academy of Sciences (INR) ¹⁷Waseda University ¹⁸Chiba University ¹⁹Chungnam National University ²⁰Ewha Womans University ²¹Kyoto University ²²Kochi University ²³Ritsumeikan University ²⁴Universite Libre de Bruxelles ²⁵University of Tokyo (Earthquake Institute) ²⁶Hiroshima City University ²⁷RIKEN ²⁸Japanese National Institute of Radiological Science ²⁹Ehime University ³⁰Kyushu University ³¹ CEICO, Institute of Physics, Czech Academy of Sciences

Belgium, Czech Republic, Japan, Korea, Russia, USA

Telescope Array surface detector

- ▶ 507 SD's, 3 m² each
- 680 km² area
- 9 years of operation (this analysis)

Largest UHECR statistics in the Northern Hemisphere

Photon-induced showers:

- arrive younger
- contain less muons
- ► ⇒ multiple SD observables affected:
 - ► front curvature, Area-over-peak, number of FADC signal peaks, χ²/d.o.f., S_b

Photon search: data and Monte-Carlo sets

- Data collected by TA surface detector for the nine years: 2008-05-11 — 2017-05-11
- p and γ Monte-Carlo sets with CORSIKA and dethinning

Stokes et al, Astropart.Phys.35:759,2012

Cuts for both data and MC:

- 7 or more detectors triggered
- core distance to array boundary is larger than 1200m
- χ²/d.o.f. < 5
 </p>
- θ < 60°
- ► $E_{\gamma} > 10^{18}$ eV (E_{γ} is estimated with photon Monte-Carlo) 52769 events after all cuts expect lightning cut

Note: MC set is split into 3 equal parts: (I) for training the classifier, (II) for cut optimization, (III) for exposure estimate.

Lightning-induced air showers

- It is shown that there are triggers of TA SD associated with the downward propagating ladders in lightning flushes.
 - Multiple SD triggers are observed within one millisecond

Phys.Lett. A 381 (2017) 2565.

- The results of Lightning Mapping Array (LMA) at TA site Journal of Geophysical Research: Atmospheres, 123, (2017) 6864-6879
- The lightnings induce electromagnetic showers, which may be identified as photons. At least five candidates of this sort passed the cuts, see GR, ICRC'2017 for details.
- We use the National Lightning Detector Network (NLDN) data on lightnings at the location of TA SD.

We appreciate Vaisala Inc's academic research policy

Both data and Monte-Carlo events are removed within ±10 min from NLDN events. An associated loss of exposure is only 0.66% of the total exposure time.

52362 events after all cuts

Photon search: list of relevant observables

- **1**. Zenith angle, θ ;
- 2. Signal density at 800 m from the shower core, S_{800} ;
- 3. Linsley front curvature parameter, *a*;
- 4. Area-over-peak (AoP) of the signal at 1200 m;

Pierre Auger Collaboration, Phys.Rev.Lett. 100 (2008) 211101

- 5. AoP LDF slope parameter;
- 6. Number of detectors hit;
- 7. N. of detectors excluded from the fit of the shower front;
- 8. $\chi^2/d.o.f.$;
- 9. $S_b = \sum S_i \times r_i^b$ parameter for b = 3 and b = 4.5;

Ros, Supanitsky, Medina-Tanco et al. Astropart. Phys. 47 (2013) 10

- 10. The sum of signals of all detectors of the event;
- 11. Asymmetry of signal at upper and lower layers of detectors;
- 12. Total n. of peaks within all FADC traces;
- 13. N. of peaks for the detector with the largest signal;
- 14. N. of peaks present in the upper layer and not in lower;
- 15. N. of peaks present in the lower layer and not in upper;

Multivariate analysis

The Boosted Decision Trees (BDT) technique is used to build *p*-γ classifier based on multiple observables.

Pierre Auger Collaboration, ApJ, 789, 160 (2014)

root::TMVA is used as a stable implementation.

PoS ACAT 040 (2007), arXiv:physics/0703039

BDT is trained with Monte-Carlo sets:

 γ (Signal) and p (Background)

- BDT classifier is used to convert the set of observables for an event to a number ξ ∈ [-1 : 1]: 1 - pure signal (γ), -1 pure background (p).
- ξ is available for one-dimensional analysis. The cut on ξ for the search is optimized using proton MC as a null-hypothesis.

Distribution of MVA estimator (ξ) for data and MC

- The photon candidates are selected using the cut on ξ: ξ > ξ_{cut}(θ)
- The cut is approximated as a quadratic function of θ
- Cut is optimized in each energy range using proton and photon Monte-Carlo (cut optimization subsets)
- The merit factor is an average photon upper limit if the null-hypothesis is true (all protons)

- Geometric exposure for $\theta \in (0^{\circ}, 60^{\circ})$: 12060 km² sr yr
- Effective exposure is estimated using photon MC assuming E⁻² primary spectrum

E ₀	quality cuts	ξ-cut	A _{eff} km² sr yr
10 ^{18.0}	6.5%	9.8%	77
10 ^{18.5}	19.9%	10.6%	255
10 ^{19.0}	43.6%	16.2%	852
10 ^{19.5}	52.0%	37.2%	2351
10 ^{20.0}	64.2%	52.3%	4055

$E_{\gamma} > 10^{18}$ eV, zenith angle dependent cut on ξ : MC

$E_{\gamma} > 10^{18}$ eV, zenith angle dependent cut on ξ : MC

$E_{\gamma} > 10^{18}$ eV, zenith angle dependent cut on ξ : data

Photon candidate events

energy cut	event date and time	
$E_0 > 10^{18.0} {\rm eV}$	2012-03-24 14:06:23	
$E_0 > 10^{18.5} {\rm eV}$	none	
$E_0 > 10^{19.0} {\rm eV}$	none	
$E_0 > 10^{19.5} {\rm eV}$	none	
$E_0 > 10^{20.0} { m eV}$	2012-03-24 14:06:23	

- No thunderstorms in March 2012.
- Expected background from proton misclassification: ~0.5 events in each energy range.
- The background estimate depends on composition and hadronic model. To stay conservative, zero background is assumed in the analysis.

Results: photon flux limits

<i>E</i> ₀ , eV	10 ^{18.0}	10 ^{18.5}	10 ^{19.0}	10 ^{19.5}	10 ^{20.0}
γ candidates	1	0	0	0	1
$\bar{n} <$	5.14	3.09	3.09	3.09	5.14
A _{eff}	77	255	852	2351	4055
$F_{\gamma} <$	0.067	0.012	0.0036	0.0013	0.0013

models from J. Alvarez-Muniz et al. EPJ Web Cong. 53, 01009 (2013)

Search for point sources of the ultra-high-energy photons

- The skymap is pixelized into 12288 directions with HEALpix
- An independent search with the cut optimization is performed in circles centered in each of the pixels; radius = angular resolution
- Angular reconstruction for photons:

E_{γ}, eV	ang. resolution 68%
10 ^{18.0}	3.00°
10 ^{18.5}	2.92°
10 ^{19.0}	2.64°
10 ^{19.5}	2.21°
10 ^{20.0}	2.06°

Point-source photon flux upper-limits

Photon flux upper-limit, E > 1 EeV

$\vdash \alpha \geq$, ev	$\langle \boldsymbol{r}_{\gamma} \rangle \leq , \mathrm{km} \mathrm{yr}$	max. γ signii. (pre-thai)
10 ^{18.0}	0.094	2.72 σ
10 ^{18.5}	0.029	2.71 σ
10 ^{19.0}	0.010	2.89 σ
10 ^{19.5}	7.1×10^{-3}	2.76 σ
10 ^{20.0}	$5.8 imes 10^{-3}$	3.43 σ

Pierre Auger: $\langle F_{\gamma} \rangle \le 0.035 \text{ km}^{-2} \text{yr}^{-1}$ (1° ang.res., 10^{17.3} $\le E \le 10^{18.5} \text{ eV}$)

A. Aab et al. ApJ 789, 160 (2014)

Neutrino search strategy

young shower, $\theta = 19.5^{\circ}$

neutrino shower, $\theta = 78.6^{\circ}$

- Neutrino-induced showers are young while very inclined
- Waveform has many peaks
 upper layer lower layer

Method

- Cuts:
 - 5 or more detectors triggered
 - core distance to array boundary is larger than 1200m

 - 45° < θ < 90°</p>
 - no energy cut

197250 events after cuts

- Multivariate analysis is used
 - ► The set of observables is the same as for photon search (Energy is replaced with *S*₈₀₀)
 - Method: Boosted decision tree trained with inclined proton (background) and all-flavor down-going neutrino (signal) Monte-Carlo
 - The cut on ξ is optimized in a similar to photon search way

Distribution of MVA estimator (ξ) for data and MC

data neutrino MC proton MC

Results

- 0 neutrino candidates after cuts, \bar{n}_{ν} < 2.44 (90% C.L.)
- Exposure:
 - Geometric exposure for $\theta \in (45^\circ, 90^\circ)$: 8042 km² sr yr
 - probability to interact in the atmosphere: 1.4×10^{-5}
 - $\blacktriangleright\,$ trigger, reconstruction and quality cuts efficiency $\sim 7\%$
 - ξ cut efficiency: ~ 24%
 - total exposure (all flavors): $A = 1.9 \times 10^{-3} \text{ km}^2 \text{ sr yr}$
- ► Single flavor diffuse neutrino flux limit for $E > 10^{18}$ eV: $E^2 f_{..} < 1.4 \times 10^{-6}$ GeV cm⁻²s⁻¹sr⁻¹ (90% C.L.)

Conclusions

- The search for photons and neutrino in the TA SD 9 years data is performed with the multivariate analysis method.
- Diffuse and point-source photon flux upper limits above 10^{18.0} eV are presented.

 Down-going neutrino diffuse flux limits above 10^{18.0} eV are presented.

The development and application of the multivariate analysis method is supported by the

Backup slides

Impact of possible proton MC systematics

 Proton MC is used for MVA estimator training and cut optimization

Systematics in proton MC affects the method sensitivity

- 1. protons are closer to photons that data: exposure is underestimated
- 2. data are closer to photons than protons: extra photon candidates in the data set
- In both cases the flux limits stay conservative

Results: point-source photon flux upper-limits

Plot: T. Okuda

TA Observation: "Burst" Events

- 5 year data (2008-2013)
- 10 surface detector bursts seen
 - 3 or more SD triggers, $\Delta t < 1$ msec
 - Occasional Δt ~ 10 μsec
- "Normal" SD trigger rate < 0.01 Hz. These cannot be cosmic ray air showers.
- Found to have close time/space
 coincidence with U.S. National Lightning Detection Network (NLDN) activity.
- Abbasi et al. Phys. Lett. A 381 (2017).

SD observable: Area over peak

Consider a surface station time-resolved signal

- Both peak and area are well-measured and not much affected by fluctuations
- First introduced by Pierre Auger Collaboration in the context of neutrino search

$E_{\nu} > 10^{18}$ eV, zenith angle dependent cut on ξ : MC

$E_{\nu} > 10^{18}$ eV, zenith angle dependent cut on ξ : MC

$E_{\nu} > 10^{18}$ eV, zenith angle dependent cut on ξ : data

0 neutrino candidate events

Event reconstruction: fit functions

► Joint 7-parametric fit: x_{core} , y_{core} , θ , ϕ , S_{800} , t_0 , a

$$f(r) = \left(\frac{r}{R_m}\right)^{-1.2} \left(1 + \frac{r}{R_m}\right)^{-(\eta - 1.2)} \left(1 + \frac{r^2}{R_1^2}\right)^{-0.6}$$
$$LDF(r) = f(r)/f(800 \text{ m})$$

$$S(r) = S_{800} \times LDF(r)$$

 $t_0(r) = t_0 + t_{plane} + a \times 0.67 (1 + r/R_L)^{1.5} LDF(r)^{-0.5}$

$$R_m = 90.0 \text{ m}, \ R_1 = 1000 \text{ m}, \ R_L = 30 \text{ m}$$

 $\eta = 3.97 - 1.79(\sec(\theta) - 1)$

Distribution of ξ for data and MC 10²⁰ eV

