Detection of ultra-high energy cosmic ray air showers by Cosmic Ray Air Fluorescence Fresnel-lens Telescope for next generation

Y. Tameda^a, M. Yamamoto^b, T. Tomida^b, D. Ikeda^c, K. Yamazaki^d, H. Iwakura^b, Y. Nakamura^b, Y. Saito^b

The present situation of UHECR observation

- TA reported hotspot (5 σ) Intermediate scale anisotropy of the arrival direction of UHECRs (E>57EeV)
- What should we do to clarify UHECR sources ?

- Extension of detection area for larger statistics.
- Can UHECRs propagate straight ?
 - Observation of X_{max}

Solution :

Huge observatory using fluorescence detector(FD).

However, Cost of FDs in use are high :(

Expected signal of Single pixel FD

Simulation condition : 1 m² lens (90% trans.), 8 inc. PMT, UV filter (BG3), FOV 16°x16°

Cosmic Ray Air Fluorescence Fresnel lens Telescope

Single pixel Fresnel lens telescope

- Simple structure, without container
- Easy to deploy
- No obstacle between lens and focus
- Necessity of multiple observation for geometrical determination
- Worse S/N compared to multi pixels.

Component	Product	Specification	Cost/FD
Structure	MIWA	Aluminum frame	950
Fresnel lens	NTKJ, CF1200-B	1m², f=1.2m	370
UV trans. filter	Hoya, UL330 Hamamatsu, R5921	~90%,300-360nm 8 inch	3,000 2,000
PMT			
FADC	TokushuDenshiKairo, Cosmo-Z	80MHz, 12bit	290
Amplifier	Lecroy, 612AM		1,000
HV	CAEN, N1470AR	8kV, 3mA	1,600
		Total (\$) :	9210

Shading curtain inside.

8 in. PMT with UV transmitting filter. 8° spacial filter for test observation.

UHECR2018, 12 Oct 2018

The status of CRAFFT

2017 Sep. Built four CRAFFT detectors. 2017 Oct. Deployed detectors at TA FD site.

Detector configuration

Test Observation at TA FD site

- Test observation at TA FD site
- 2017 Nov. 9 ~ Nov. 23
- Obs. time : 63.5 h (10 nights)
- Expected events / month :
 ~8 events (above 10¹⁷ eV)
- Triggered by TA FD triggering timing
- # of recorded events : 556,255

Deployed detectors next to to the TA FD building @ RBM

Performance test with TA CLF

CRAFFT detected CLF laser event. CLF(Central Laser Facility) Nd:YAG pulse laser, $\lambda = 355$ nm, 5mJ, 20 km apart from CRAFFT detectors. Corresponding to 10^{20} eV air shower

CLF laser is crossing the F.O.V. of CRAFFT detector and TA FD.

We succeeded to detect air shower events !!

Energy: 10^{17.7} eV, Distance: 3.6 km (by TA FD)

Air shower events observed by CRAFFT

2017-11-15 05:47:08

2017-11-19 03:33:46

1018.0eV, 2.3 km

2017-11-15 06:16:57

2017-11-23 09:31:19

UHECR2018, 12 Oct 2018

Air shower event observed by CRAFFT

2017-11-11 05:59:54

2017-11-15 07:24:00

2017-11-15 06:16:09

2017-11-20 06:36:05

Ray tracing simulation

to understand the optics and optimize the detector configuration.

Spot of white light at focal plane.

Simulated spot.

Ray tracing simulation by ROBAST (ROBSAT : A. Okumura 2016)

95 % spot size : 44 mm $\lambda = 280 \sim 400$ nm, Focus = 1100 mm

Ray tracing simulation

to understand the optics and optimize the detector configuration.

Spot of white light at focal plane.

Simulated spot.

95 % spot size : 44 mm $\lambda = 280 \sim 400$ nm, Focus = 1100 mm

<u>.</u>	6	0.9
5	4	0.8
2	4	0.7
5	2	0.6
>		0.5

Under optimization of the detector
Double lenses to extend the F.O.V.

Multi pixels to improve S/N ratio

Larger size of lens to extend aperture

Ray tracing simulation by ROBAST (ROBSAT : A. Okumura 2016)

light collection efficiency

Automation system

Automation system test

Planed data : 2018 Oct, Nov @TA FD site

- Solar power system
- Automation DAQ system
- Update electronics except FADC board.
- Detector protecting system will be tested in Japan.
 - Now, we mounted roll curtain inside the Fresnel lens.
 - Considering electric powered shutter or

roll screen

Future prospect : CRAFFT Array

Future prospect : CRAFFT Array

Future prospect : CRAFFT Array

Summary

CRAFFT (Cosmic Ray Air Fluorescence Fresnel lens Telescope)

- Developing a low cost FD using Fresnel lens and single pixel
- · Deployed four CRAFFT detectors at TA FD site.
- Test observation : 2017 Nov. 9 ~ Nov. 23 (10 nights, 63.5 h)
- Succeed to detect 10 UHECR air shower events !!
- Future prospect
 - Optimizing detector configuration
 - Now is the time to discuss next generation UHECR observatory

