Cosmogenic neutrinos from a fit to the Auger spectrum and composition

...and their dependence on the disintegration and air shower model

Jonas Heinze UHECR-workshop, Paris 9.10.2018 JH, A. Fedynitch, D. Boncioli, W. Winter *in preparation*

UHE Cosmic Rays and Cosmogenic Neutrinos

Model inputs

Source: Auger

UHE Cosmic Ray Composition

Assuming we know the injected composition perfectly...

Photohadronic model

- Nuclear Disintegration at lower energies ($\epsilon_r \leq 150 \text{ MeV}$)
 - Models: PSB, Talys, Peanut
- Meson-production at higher energies ($\epsilon_r \ge 150 \text{ MeV}$)
 - Superposition Model?!

Scientific Reports 7 (2017) 4882

Air-Shower Model

- To convert composition to X_{max}
- Models: Epos-LHC, Sibyll 2.3, QGSjet-II.4

Which model has more impact on the astrophysical interpretation?

Page 3

UHECR Transport Equation

- About $50 \times \text{number of E-bins}$ • coupled differential equations
- All coefficients time and energy dependent •
- Fast computation times needed to study cross-section / photon-field uncertainties

We have developed a new Code: (with Anatoli Fedynitch) **PriNCe**

adiabatic cooling pair - production

photo-hadronic

Injection Page 4

DESY. | Jonas Heinze | UHECR-workshop | 9.10.2018

Propagation Code - PriNCe

Propagation including Nuclear Cascade equations

- Written in pure Python
 using Numpy and Scipy
- Specifically makes use of sparse matrix structure

 20s – 40s for single spectrum (depending on number of system species)

 More efficient to study model uncertainties than Monte-Carlo (cross-section, photon fields etc.)

$$\partial_t Y_i(E,z) = + \partial_E(HEY_i) - \partial$$

Sources – Generic model

Generic assumptions

Choices following Auger Combined Fit
 ...extended to source evolution

Auger Collaboration, JCAP04(2017)038

- Only five injection elements: *H*, *He*, *N*, *Si*, *Fe*
- Simple Power-law with rigidity dependent cut-off

$$J_A(E) = \mathcal{J}_A\left(\frac{E}{10^9 \text{ GeV}}\right)^{-\gamma} \times f_{\text{cut}}(E, Z_A, R_{\text{max}}) \times n_{\text{evol}}(z)$$

Source evolution locally as

 $n_{\rm evol}(z) = (1+z)^m$

Total of 8 free parameters

Results: Fit to spectrum and Composition

3

For combination Talys – Sibyll 2.3

- Fit **2017** spectrum + composition by • χ^2 -fit and energy shift of ± 14 %
- Shown as 2D profiles ٠ by minimizing over all other fit-parameters
- Features:
 - Narrow range in R_{max}
 - γR_{max} correlation similar to flat evol. fit
 - Strong correlation in γm
- Two types of sources
 - Hard γ 'distant' sources
 - Soft γ 'local' sources

Results: Best fit spectrum

For combination Talys – Sibyll 2.3

- Fit mainly sensitive to envelope of cutoffs
- Fit-range insensitive above z = 1!
- Composition below ankle proton dominated (by construction) ...
- ... additional heavy component needed (galactic)

E [GeV]

E [GeV]

Results: Best fit spectrum

For combination Talys – Sibyll 2.3

- Fit mainly sensitive to envelope of cutoffs
- Fit-range insensitive above z = 1!
- Composition below ankle proton dominated (by construction) ...
- ... additional heavy component needed (galactic)

Iron fraction constrained! (Only with 2017 data)

Best fit Spectra using flat evolution

Cosmogenic neutrinos

For combination Talys – Sibyll 2.3

- Neutrino bands
 from UHECR fit contours
- Flux mainly depends on source evol.
- How do contours change for different disintegration/ shower models? Are neutrinos affected?
- UHECRs sensitive to $z \le 1$

How to continue at higher redshift?

Model dependence of the Fit

Compared in $\gamma - m$ space

Disintegration model

- Qualitatively similar fits
- PSB: Ligher injection
- Peanut/Talys: Heavier injection

Shower model

- Epos-LHC: Two distinct minima avoids disintegration
- Sibyll 2.3: Larger allowed space prefers disintegration
- QGSjet 4 II: Overall rather bad fit See also: Auger Collaboration JCAP02(2013)026 Auger Collaboration JCAP04(2017)038

Model dependence of the Fit

Compared in $\gamma - m$ space

Disintegration model

- Qualitatively similar fits
- PSB: Ligher injection
- Peanut/Talys: Heavier injection

Shower model

- Epos-LHC: Two distinct minima avoids disintegration
- Sibyll 2.3: Larger allowed space
 prefers disintegration
- QGSjet 4 II: Overall rather bad fit See also: Auger Collaboration JCAP02(2013)026 Auger Collaboration JCAP04(2017)038

Model dependence of the Fit

Compared in $\gamma - m$ space

Disintegration model

- Qualitatively similar fits
- PSB: Ligher injection
- Peanut/Talys: Heavier injection

Shower model

- Epos-LHC: Two distinct minima avoids disintegration
- Sibyll 2.3: Larger allowed space
 prefers disintegration
- QGSjet 4 II: Overall rather bad fit
 See also: Auger Collaboration JCAP02(2013)026
 Auger Collaboration JCAP04(2017)038

The shower model has a stronger qualitative impact!

Model dependence of composition

Composition at the source: Sibyll 2.3

• Fractions of total emissivity!

$$I_A = \frac{\int_{E_{\min}}^{\infty} J_A(E) E dE}{\sum_A \int_{E_{\min}}^{\infty} J_A(E) E dE}$$

- Ranges along m by min/max over other parameters
- Disintegration model affects mainly He / N ratio
- Shower model has stronger effect on composition:
 - Allowed proton fraction
 - Significant impact
 on silicon fraction

Model dependence of composition

Composition at the source: Epos-LHC

• Fractions of total emissivity!

$$I_A = \frac{\int_{E_{\min}}^{\infty} J_A(E) E dE}{\sum_A \int_{E_{\min}}^{\infty} J_A(E) E dE}$$

- Ranges along m by min/max over other parameters
- Disintegration model affects mainly He / N ratio
- Shower model has stronger effect on composition:
 - Allowed proton fraction
 - Significant impact
 on silicon fraction

Model dependence of composition

Composition at the source: Sibyll 2.3 vs Epos-LHC

Fractions of total emissivity!

$$I_A = \frac{\int_{E_{\min}}^{\infty} J_A(E) E dE}{\sum_A \int_{E_{\min}}^{\infty} J_A(E) E dE}$$

- Ranges along m by min/max over other parameters
- Disintegration model affects mainly He / N ratio
- Shower model has stronger effect on composition:
 - Allowed proton fraction
 - Significant impact
 on silicon fraction

Talys

PSB

Peanut

Page 17

Model dependence of Cosmogenic Neutrinos

Shower Model

- Sibyll 2.3 slightly higher than Epos-LHC
- QGSjet low flux (bad UHECR fit)

Disintegration Model

- Varies within a factor 2
- Lower limit due to minimal m

Maximal flux level robust within a factor 2-3

Redshift extrapolation beyond z = 1

Source evolution

• How to continue above z = 1?

Specific source classes

• SFR: $m \sim 3.4$

• AGN: $m \sim 5$

Sensitivities peak at too high energy (except POEMMA)

Conclusions

- Two distinct source populations favoured by fit:
 - Strong source evolution ... but almost mono-chromatic sources
 - Soft spectral-index ... but very local sources
- UHECR fit driven by envelope of rigidity-dependent cut-offs
- SIBYLL, EPOS, QGSJET indicate different source class interpretations
- The shower-model has a stronger impact on the injection composition interpretation than the disintegration-model
- The flux of cosmogenic neutrinos is relatively robust to disintegration and shower model and mainly dependent on source evolution
- Cosmogenic flux level might be too low for proposed experiments
- ... Less background for detecting source neutrinos!

Backup Plots

Model comparison over $\gamma - R_{max}$

Model comparison over $R_{max} - m$

Best fit spectrum – effect of air shower model

using Talys

1012

н

Ν

Si

Fe

He

Best fit spectrum – effect of air shower model

using Talys

Best fit Spectra using flat evolution

Fit contours

2015

2017

TALYS-Epos

TALYS-QGSjet

Spectrum for high redshift

Compared to other calculation

Rafael Alves Batista et. al., arXiv: 1806.10879 (2018)

- Similar neutrino ranges (Considering different *z_{max}*)
- Their fit allows for slightly higher rigidity
- ... leads to higher flux in SFR case

Rafael Alves Batista et. al., arXiv: 1806.10879 (2018) Page 30

Compared to other calculation

Rafael Alves Batista et. al., arXiv: 1806.10879 (2018)

- Similar neutrino ranges (Considering different *z_{max}*)
- Their fit allows for slightly higher rigidity
- ... leads to higher flux in SFR case

Rafael Alves Batista et. al., arXiv: 1806.10879 (2018) Page 31

PriNCe - Cross checks

PriNCe - Cross checks

Cosmogenic Neutrinos for protons

