

UHECR2018

Ultra-high-energy cosmic rays and neutrinos from tidal disruptions by massive black holes

C. Guépin, K. Kotera, E. Barausse, K. Fang and K. Murase

Claire Guépin Institut d'Astrophysique de Paris

Multi-messenger transient astronomy

Sources for UHECRs and neutrinos?

Observations Ultra-High Energy Cosmic Rays and Neutrinos

UHECR spectrum

Pierre Auger Collaboration, ICRC2017

UHECR composition

Pierre Auger Collaboration, ICRC2017

Sources for UHECRs and neutrinos?

Observations

Ultra-High Energy Cosmic Rays and Neutrinos

Sources for UHECRs and neutrinos?

Observations

Ultra-High Energy Cosmic Rays and Neutrinos

Astrophysical neutrino flux

IceCube collaboration, ICRC2017

Sources?

Gamma-ray bursts, Active Galactic Nuclei, pulsars...

Promising candidate sources of ultrahigh energy messengers

C. Guépin, K. Kotera, E. Barausse, K. Fang and K. Murase, 2018, A&A, 616, A179

- Propagation and interaction of UHECRs in various radiative backgrounds
- Applied to TDEs powering jets

Observed non-thermal emission → properties of radiation region/jet (e.g. Swift J1644+57)

- time variability of the emission $t_{\rm var} = 10^2 \, {
 m s}$
- equipartition $U_B = U_{rad} \longrightarrow mean magnetic field$
- bulk Lorentz factor $\Gamma \sim 10$

Impact of interactions within the jet?

Especially for nuclei, numerical treatment required:

- various interaction and energy-loss processes
- production of secondary particles

Photon density in the jet (observable) $\epsilon'^2 n'_{\epsilon'} = \frac{L_{\rm pk}}{4\pi\Gamma^2 R^2 c} (\epsilon'/\epsilon'_{\rm pk})^{-\hat{a}\log(\epsilon'/\epsilon'_{\rm pk})}$

- Mon-thermal emission → accelerated particles radiation. Jet emission dominates, not accretion disk emission (thermal).
- Observed spectrum (absorptioncorrected) as target for UHECR interactions inside the jet.

In the following, fixed width, variable peak luminosity: high state, medium state

Photon density in the jet (observable) $\epsilon'^2 n'_{\epsilon'} = \frac{L_{\rm pk}}{4\pi\Gamma^2 R^2 c} (\epsilon'/\epsilon'_{\rm pk})^{-\hat{a}\log(\epsilon'/\epsilon'_{\rm pk})}$

- Mon-thermal emission → accelerated particles radiation. Jet emission dominates, not accretion disk emission (thermal).
- Observed spectrum (absorptioncorrected) as target for UHECR interactions inside the jet.

In the following, fixed width, variable peak luminosity: high state, medium state

Photon density in the jet (observable) $\epsilon'^2 n'_{\epsilon'} = \frac{L_{\rm pk}}{4\pi\Gamma^2 R^2 c} (\epsilon'/\epsilon'_{\rm pk})^{-\hat{a}\log(\epsilon'/\epsilon'_{\rm pk})}$

Mean free paths for various interaction processes

- ♦ No deflection, t_{dyn} prevail over t_{diff} at these energies
 → escape of particles directly related to t_{dyn}
- Interaction/energy-loss timescales (discrete or continuous processes):

$$t_{N\gamma}^{-1}(\gamma_N) = \frac{c}{2\gamma_N^2} \int_{\epsilon'_{\rm th}}^{\infty} \mathrm{d}\epsilon' \frac{n'_{\epsilon}(\epsilon')}{\epsilon'^2} \int_0^{2\gamma_N \epsilon'} \mathrm{d}E E \sigma_{N\gamma}(E)$$

Photon density in the jet (observable) $\epsilon'^2 n'_{\epsilon'} = \frac{L_{\rm pk}}{4\pi\Gamma^2 R^2 c} (\epsilon'/\epsilon'_{\rm pk})^{-\hat{a}\log(\epsilon'/\epsilon'_{\rm pk})}$

Mean free paths for various interaction processes

Propagation and interaction of nuclei in the jet

7/10

UHECR and neutrino spectra for one source

Example: pure iron injection

CRs: medium state $L_{pk} = 10^{46}$ erg s⁻¹, neutrinos: high state $L_{pk} = 10^{47.5}$ erg s⁻¹

Photon density in the jet (observable) $\epsilon'^2 n'_{\epsilon'} = \frac{L_{\rm pk}}{4\pi\Gamma^2 R^2 c} (\epsilon'/\epsilon'_{\rm pk})^{-\hat{a}\log(\epsilon'/\epsilon'_{\rm pk})}$ \downarrow Mean free paths for various interaction processes $\downarrow \text{ Propagation and interaction of nuclei in the jet}$ UHECR and neutrino spectra for one source $\downarrow \text{ Population model + intergalactic propagation}$ Diffuse UHECR and neutrino spectra

Only TDEs powering jets, comoving event rate density from simulations.

- Dependences: redshift z and black hole mass $M_{
 m bh}$
- Modeling jet luminosity (following Krolik & Piran, 2012) $L_{
 m jet} \propto M_{
 m bh}^{-1/2}$

$$\Phi_{\rm CR}(E_{\rm CR}) = \frac{c}{4\pi H_0} \int_{z_{\rm min}}^{z_{\rm max}} \int_{L_{\rm min}}^{L_{\rm max}} dz \, dL \, \frac{f_{\rm s} \xi_{\rm CR} \, \dot{N}_{\rm TDE} \, dn_{\rm bh}(z,L)/dL}{\sqrt{\Omega_{\rm M}(1+z)^3 + \Omega_{\Lambda}}} \times F_{\rm CR,s,p}^c(E_{\rm CR}^c,z,L) t_{\rm dur}^c$$

Diffuse UHECR and neutrino spectra + composition

composition: **70% Si et 30% Fe** injection spectral index: 1.5 acceleration efficiency: 0.1 fraction of the event local rate: 1% • maximum local event rate density: 155 Gpc⁻³ yr⁻¹

Diffuse UHECR and neutrino spectra + composition

composition: **70% Si et 30% Fe** injection spectral index: 1.5 acceleration efficiency: 0.1 fraction of the event local rate: 1%

• maximum local event rate density: 155 Gpc⁻³ yr⁻¹

Lighter composition requires:harder injection spectral index

higher acceleration efficiency

Diffuse UHECR and neutrino spectra + composition

composition: **70% Si et 30% Fe** injection spectral index: 1.5 acceleration efficiency: 0.1 fraction of the event local rate: 1%

maximum local event rate density: 155 Gpc⁻³ yr⁻¹

Lighter composition requires:harder injection spectral index

higher acceleration efficiency

Conclusion

UHECRs and neutrinos from jetted tidal disruption events

- numerical tool, propagation and interaction of UHECR in any type of radiative background
- applied to tidal disruptions by massive black holes powering jets
- parameters chosen to reproduce the Auger UHECR spectrum and composition:
 - composition and spectral index of injection,
 - acceleration efficiency,
 - fraction of the event local rate,
- predicted neutrino spectrum only marginally detectable with GRAND.

Perspectives

- include gamma-ray production
- uncertainties?
 - bulk Lorentz factor
 - interactions cross sections, production of secondaries
 - propagation...

Conclusion

UHECRs and neutrinos from jetted tidal disruption events

- numerical tool, propagation and interaction of UHECR in any type of radiative background
- applied to tidal disruptions by massive black holes powering jets
- parameters chosen to reproduce the Auger UHECR spectrum and composition:
 - composition and spectral index of injection,
 - acceleration efficiency,
 - fraction of the event local rate,
- predicted neutrino spectrum only marginally detectable with GRAND.

Perspectives

- include gamma-ray production
- uncertainties?
 - bulk Lorentz factor
 - interactions cross sections, production of secondaries
 - propagation...

THANK YOU FOR YOUR ATTENTION

Mass function of black holes as a function of redshift Semi-analytic galaxy formation model, Barausse (2012)

Comoving TDE luminosity density (medium state) as a function of redshift

for TDE rate per galaxy 10–5 yr–1 $L_{\rm jet} \propto M_{\rm bh}^{-1/2}$