UHECR 2018 Ultra High Energy Cosmic Rays

Latest results on high-energy cosmic neutrino searches with the ANTARES neutrino telescope

A. Sánchez-Losa (INFN – Sezione di Bari)

agustin.sanchez@infn.ba.it

on the behalf of the ANTARES Collaboration

Neutrino as a messenger

Neutrinos:

- electrically neutral -> trajectory not affected by magnetic fields, point back to the source
- stable -> travel long distances
- weakly interacting -> penetrate regions opaque to photons

- hadronic source surrounding $p + p/\gamma \rightarrow \pi + \dots$ $\pi^0 \rightarrow \gamma + \gamma$ $\pi^+ \rightarrow \mu^+ + \nu_\mu$ $\pi^- \rightarrow \mu^- + \tilde{\nu}_\mu$
- Neutrino detection → strong indication of hadronic acceleration in astrophysical sources.
- Correlated γ-ray emission expected for most sources.

 $u_e:
u_\mu:
u_ au = 1:2:0$ $u: ilde{
u} = 1:1$ at source

 $egin{aligned}
u_e:
u_\mu:
u_ au&=1:1:1\
u:
 ilde

u&=1:1 & ext{at Earth} \end{aligned}$

ANTARES

~480 m

14.5m

- String-based detector;
- Downward-looking (45°) PMTs;
- 2475 m deep;

40 km cable to shore

Junction Box

 $C \ge C$

- 12 detection lines
- 25 storeys / line
- 3 PMTs / storey
- 885 PMTs

🛄 NIM A 656, 11–38 (2011)

~70 m

100 m

© François Montanet

ANTARES

- Effective area ~1 m² @ 30 TeV
- Visibility ¾ of the sky, most of the galactic plane.
- 40 km offshore from Toulon

- Only 20% OM efficiency decrease.
- Still running with 11/12 lines

2 main topologies: tracks + showers

Angular resolution: <0.4° @ E_v >10 TeV Energy resolution: <0.5 on log E_{μ}

Angular resolution: $\sim 3^{\circ}$ Energy resolution: $\sim 25\%$ (<10% for v_e-CC)

Latest cosmic neutrino searches (this talk)

- Special issue: IC170922A & TXS 0506+056 ... [ApJL 863, L2 (2018)]
- Diffuse fluxes:
 - All sky ... [📖 ApJL 853, L7 (2018)]
 - Galactic plane ... [Phys. Rev. D 96, 062001 (2017)]
 - ANTARES-IC combined analysis ... [arXiv:1808.03531, submitted to ApJL]
- Point source analyses:
 - All sky & candidate list ... [Phys. Rev. D 96, 082001 (2017)]
 - ANTARES-IC combined analysis ... [work in progress...]
- Multi-messenger studies:
 - ANTARES-Auger-TA ... [PoS 990 (ICRC2017)]
 - ...

Other recent analyses (not covered here)

- Multi-messenger studies (Cont.):
 - Fast Radio Burst ... [MNRAS 469, 4465 (2017); MNRAS 475, 1427 (2018)]
 - X-ray binaries ... [🕮 JCAP 04, 019 (2017)]
 - Gamma Ray Burst ... [MNRAS 469, 906–915 (2017)]
 - Gravitational Waves ... [ApJL 848 L12 (2017); ApJL 850 L35 (2017); Phys. Rev. D 96, 022005 (2017); Eur. Phys. J. C 77, 911 (2017)]
 - Astronomer Telegram ANTARES alerts ... [ATEL#7987; PoS 985 (ICRC2017)]
 - TATOO: optical/X-ray follow up of ANTARES alerts ... [I JCAP02, 062 (2016)]
- Dark matter studies:

۲

...

- Galactic Centre ... [Phys. Let. B 769, 249 (2017)]
- Sun [Phys.Lett. B759, 69–74 (2016)]
- Earth ... [Physics of the Dark Universe 16, 41–48(2017)]
- Updated oscillation study ... [soon on arxiv]
- Moon shadow and absolute pointing ... [arXiv:1807.11815, submitted to EPJC]

IC170922A & TXS 0506+056

 IC170922A: a ~290 TeV neutrino induced muon track is detected on 22/09/2017...

...high probability of astrophysical origin Time and direction coincident with a gamma-ray flare from the blazar TXS 0506+056 (Fermi-LAT,MAGIC)

IceCube finds a 3.5σ evidence of a transient neutrino emission on TXS 0506+056 direction between Sep'2014 and Mar'2015 with 9.5 years of data [\square Science 361, 147–151 (2018)]

ANTARES looks for neutrino emission there and then:

[🖽 ApJL 863, L2 (2018)]

- 1) Online search for neutrinos associated to IC170922A: HE neutrino candidates are searched in the ANTARES online data stream in the direction of IC170922A originally reported by IceCube in the GCN circular.
- 2) Time integrated search for neutrinos from TXS 0506+056: motivated by the potential association between IC170922A and the blazar, TXS 0506+056 position is scrutinized with an standard ANTARES point-source analysis
- 3) Search for neutrinos in the bursting period: standard time-dependant analysis during the bursting periods found by IceCube

Online search for neutrinos associated to IC170922A

Extremely High Energy track event reported with a GCN circular by IceCube:

- T0 = 17/09/22, 20:54:30.43 UT
- (RA, δ) = (77.43°, 5.72°)
- 14.2° below the horizon

Fast algorithm search in the ANTARES online data stream for up-going High Energy neutrino candidates:

- No dynamical positioning calibration: idealized detector geometry
- Median angular resolution:

<0.5° @ E_v>10 TeV

• Competitive sensitivity w.r.t. IceCube in that sky region for E_v <100 TeV

Visibility map for the ANTARES detector of IC170922A (X) in equatorial coordinates

Spectrum	90% C.L. Fluence	5% – 95%	
	[GeV cm ⁻²]	energy range	
E ^{-2.0}	15	3.3 TeV – 3.4 PeV	
E ^{-2.5}	34	450 GeV – 280 TeV	

Searches for up-going muon neutrinos in a 3° cone centred on the IceCube event coordinates with two time windows around the event time:

- ±1 hour
- ±1 day (46% visibility probability)

No coincident up-going muon neutrino recorded

90% C.L. fluence U.L. for a $dN/dE \propto E^{-\gamma}$ source (2h) ⁸

Time integrated search for neutrinos from TXS 0506+056 [C] ApJL 863, L2 (2018)]

ANTARES standard point source method: Maximum likelihood ratio approach on 107 candidate sources (TXS 0506+056 included)

Data analysed: 2007 – 2017 (livetime 3136 days)

Expected background:

- 0.23/deg² for track-like events
- 0.005/deg² for shower-like events

Results:

- Fitted signal: n_{sg} = 1.03
- Pre-trial p-value of 3.4% (post-trial 87%)
- 1 track at 0.3° from the source on 12/12/2013
- Flux U.L. (@100 TeV) for E⁻²: 1.6×10⁻¹⁸ GeV⁻¹ cm⁻² s⁻¹ in the 2 TeV 4 PeV range

In the 107 list of pre-selected sources, only two have a smaller p-value

Events around TXS 0506+056 in 2007-2017 ANTARES data:					
Events around TXS 0506+056 in 2007-2 13 tracks + 1 shower with	2017 ANTA hin 5° - 3.50 - 3.25 - 3.00 (stua) - 2.75 a - 2.50 (stua) - 2.	- 350 - 300 (st - 250 e seu line - 200 cascade-line - 200 cascade-line			
82 80 78 76 74 RA J2000 [°]					

Spectrum	90% C.L. flux [10 ⁻¹⁸ GeV cm ⁻² s ⁻¹]	
E ^{-2.0}	1.6	
E ^{-2.3}	1.4	
E ^{-2.5}	1.0	

Search for neutrinos in the bursting period [ApJL 863, L2 (2018)]

ANTARES time-dependent analysis: required signal for a discovery 2-3 times lower and less stringent selection cuts w.r.t. time integrated analysis [III] JCAP 04, 019 (2017), JCAP 12, 014 (2015)]

IceCube most significant flares:

- Box profile:
 - t_{start} = 56937.81 MJD
 - t_{end} = 57096.21 MJD
 - $\Delta t = 158.40$ flaring days

Results:

- 10 background events expected during all the period
- 13 events found
- None of them during flaring periods

- Gaussian profile:
 - t₀ = MJD 57004
 - $\sigma = 55 \text{ days}$
 - $\Delta t = 550$ flaring days (±5 σ)

Spectrum	90% C.L. flux	5% – 95%
	[10 ⁻¹⁸ GeV cm ⁻² s ⁻¹]	energy range
E ^{-2.0}	4.6	2.0 TeV – 3.2 PeV
E ^{-2.1}	4.4	1.3 TeV – 1.6 PeV
E ^{-2.2}	4.2	1.0 TeV – 1.0 PeV

Diffuse flux [Apjl 853, L7 (2018)]

2007 – 2015 (livetime 2450 days) All-flavour analysis: tracks + showers

Optimization:

- Event selection chain
- energy estimator threshold
- obtain a high-purity neutrino sample
- maximise sensitivity

Isotropic neutrino flux assumed, $\frac{dN_{\nu}}{dE_{\nu}} = \Phi_0 E_{\nu}^{-\Gamma}$:

• $\Gamma = 2.0, \ \Phi_0^{1f}(100 \text{ TeV}) = 1.0 \cdot 10^{-18} \left(\text{GeV cm}^2 \text{ s sr}\right)^{-1}$

•
$$\Gamma = 2.5$$
, $\Phi_0^{1f}(100 \text{ TeV}) = 1.5 \cdot 10^{-18} (\text{GeV cm}^2 \text{ s sr})$

Results:

- MC background: 24 ± 7 (stat.+syst.) events
- Observed events:

33 events (19 tracks + 14 showers)

- Compatible with IceCube flux
- 1.6σ excess
- No-signal hypothesis excluded at 85% C.L.

Diffuse flux from the Galactic plane

📖 Phys. Rev. D 96, 062001 (2017), arXiv:1808.03531 submitted to ApJL

Combined U.L. at 90% CL (blue line) on the 3-flavor neutrino flux of the KRA γ model (5 – 50 PeV cutoff)

IC/ANTARES begin to constrain KRAγ with 50 PeV CR cutoff from 90 GeV – 300 TeV (not yet for 5 PeV CR cutoff)

Stacked expected signal vs. δ (top) and energy (bottom) (colours relative to contribution to sensitivity) Total flux contribution of **diffuse Galactic neutrino** emission contributes <9% of IceCube diffuse flux (E_v > 30 TeV)

Point source searches

🛄 Phys. Rev. D 96, 082001 (2017)]

2007 – 2015 (livetime 2450 days) All-flavour analysis: 7622 tracks + 180 showers

- Full-sky Search
- Candidate list Search

106 objects (pulsars, SNRs, etc.)13 IceCube HESE tracks

• Galactic Centre Region

Ellipse 15° x 20° Test: Spectral indices y = 2.1, 2.3, 2.5

• Sagittarius A* location

Extended source: Gaussian profile of various widths ($\sigma = 0^\circ$, 0.5°, 1.0°, 2.0°)

Point source searches

🛄 Phys. Rev. D 96, 082001 (2017)

No resolved point source:

- Most significant candidate: HESSJ0632+057 $(\alpha, \delta) = (98.24^\circ, 5.81^\circ)$ p-value = 13%
- Most significant cluster in full sky: $(\alpha, \delta) = (343.8^{\circ}, 23.5^{\circ})$ p-value = 6% (1.9 σ)

Best limits for part of the Southern Hemisphere

Excellent sensitivity for $E_v < 100 \text{ TeV}$

Combined ANTARES-IceCube point source search

[work in progress...]

ANTARES 2007-2015 and the IC40, IC59, IC79, IC86 samples for the Southern Hemisphere

Sample		Livetime (days)	# events
ANTARES	tracks	2415	5807
(9 years)	showers	2415	102
IceCube	IC40	376	22779
(7 years)	IC59	348	64257
	IC79	316	44771
through-going	IC86	333	74931
tracks	2007 – 2015	1058	119231

γ =2.5

ANTARES multi-messenger strategies

- Space/time correlation → reduced background (improved sensitivity)
- Track & shower topologies
- Rapid (few secs) real-time alerts for interesting neutrino events
- Allows event-by-event identification of neutrino origin

Search for neutrinos from Auger & TA CRs [PoS 990 (ICRC2017)]

PRELIMINARY

0.5

0.4

0.3

0.2

ANTARES: 2007 – 2015 (livetime 2424 days) 7629 tracks + 180 showers Auger(SD): 2004 – 2014 [\square ApJ 804:15 (2015)] 231 CRs ($\theta \le 80^{\circ}$; E_{CR} ≥ 52 EeV) TA: 2008 – 2014

87 CRs ($E_{CR} \downarrow 13\%$)

Maximum likelihood ratio:
$$Q = \ln \mathcal{L}_{sg+bk}^{max} - \ln \mathcal{L}_{bk}$$

 $\ln \mathcal{L}_{sg+bk} = \sum_{ch}^{tr,sh} \sum_{i} \ln \left[\frac{n_{ch}}{N_{ch}} \cdot S_{\gamma}^{ch} + \left(1 - \frac{n_{ch}}{N_{ch}} \right) \cdot B^{ch} \right]$
 $B^{ch}(\delta, E) = f(\delta) \cdot g(E); \quad S_{\gamma}(\alpha, \delta, E) = f_{\gamma}(\alpha, \delta) \cdot g_{\gamma}(E) \rightarrow f_{\gamma}(\alpha, \delta) = A_{\gamma}(\delta) \cdot \left(f_{CR} \circ PSF_{\gamma} \right)(\alpha, \delta)$
 $f_{CR}(\alpha_i, \delta_i) = \sum_{j}^{N_{CR}} \frac{\Phi}{2\pi\sigma_j^2} \exp\left(-\frac{d_{ij}^2}{2\sigma_j^2} \right) \rightarrow \sigma_j(E) = \sqrt{\left(\sigma_{Auger/TA}^2 + \sigma_B^2(E_j^{CR}) \right)} \rightarrow \sigma_B(E_j^{CR}) = 3^\circ \times \frac{100}{E_j^{CR}(EeV)}$

- Non-significant result
- 90% C.L. fluence U.L. for a E_{ν}^{-2} flux:

$$\Phi_{tot}^{UL} = 1.5 \cdot 10^{-7} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$$

$$\downarrow$$

$$\Phi_{diff}^{UL} = \Phi_{tot}^{UL} / 4\pi = 1.2 \cdot 10^{-8} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

Summary

ANTARES is the largest undersea NT, in the Mediterranean Sea The most sensitive one in the TeV-PeV range (and will keep running until 2020)

Competitive physics results:

- Constraints on neutrinos as seen by IceCube and on CR correlations
- Impact on modelling of CR production and transport in the Milky Way
- > All flavour analyses with good pointing power
- Extensive multi-messenger program
- Joint studies with GNN partners very welcome!
- Although technologically challenging ANTARES is working according to specifications: proves the feasibility of a deep sea Neutrino Telescope

UHECR 2018 Ultra High Energy Cosmic Rays

Thank you for your attention