The most updated results of Magnetic fields in our Milky Way

JinLin Han National Astronomical Observatories, Chinese Academy of Sciences hjlanao.cas.cn

The Milky Way: an edge-on spiral galaxy with a bar

rselis Arm

Courtesy: R. Hurt 2008

 \bigcirc

Why to study the B-field of our Galaxy

- Galaxy: a necessary key step from stars to Universe!
- Important hints for B-origin: primordial or dynamo?
- Important roles in star formation
- Hydrostatic balance & stability in ISM:
 B²/8π= ρ v²/2 B~10⁶G, ρ=10²⁴gcm⁻³, v=10km s-1 (eg. Boilers & Cox 1990 for details)
- Key info for cosmic rays propagation!
- Foreground for CMB?!

To understand the Galactic B-field, we have to measure first ! Knowledge on the Galactic B-field is far from complete! How much do we know on the Galactic magnetic fields?

via what approach?

Observational B-tracers: What info out?

- **1. Polarization of starlight:** perpendicular field in 2 or 3 kpc orientation // B__ 9000 +? stars
- 2. Polarization at infrared, mm, submm: <u>perpendicular field</u> orientation // B₁ ------ clouds or regions
- 3. Zeeman splitting: <u>parallel field</u>, in situ (masers, clouds) $\Delta v \propto B_{//}$ ----- 137 maser regions & 17 coulds
- **4. Synchrotron radiation:** <u>vertical field structures (added)</u> total intensity $S \propto B_{\perp}^{2/7}$, $p\% \propto B_{\perp u}^2 / B_{\perp t}^2$

5. Faraday rotation: <u>parallel field, integrated (the halo & disk)</u> $RM \propto \int n_e \mathbf{B}_{//} ds$ ----- **1115** pulsars + >**3000** EGSes

Optical Sky and dusts in the Milky Way

Starlight polarization: local field // arm

- 9000+ stars have polarization measured
 - mostly nearby (1~2kpc) polarization percentage increases with distance

Polarization vs. distance dependence in the SGP area. w data are plotted with open circles

. Polarizations of the stars around the SGP. The length bar gives the amount of polarization, its direction gives rection of the polarization plane

20 -180 ection of the polarization plane Zweibel & Heiles 1997, Nature 385,131 Berdyugin & Teerikorpi 2001, A&A 368,635

GALACTIC PLANE INFRARED POLARIZATION SURVEY (GPIPS): Clemens et al. 2012 ApJS: 0.5 million stars; 18<1<56° & |b|<1° Shown co-added orientations due to dust. Up to how much dusty! No B strength,

no B direction!

Milky Way

Magnetic fields in the disk: B // Galactic Plane
 Magnetic fields in filaments: B // filaments

erseus Arm

Sun

Planck 2015: Best all-sky B-fields from dust emission

- Magnetic fields in the disk: B // Galactic Plane
- Magnetic fields in filaments: B // filaments

Fig. 22. All-sky view of the magnetic field and total intensity of dust emission measured by *Planck*. The colours represent intensity. The "drapery" pattern, produced using the line integral convolution (LIC, Cabral & Leedom 1993), indicates the orientation of magnetic field projected on the plane of the sky, orthogonal to the observed polarization. Where the field varies significantly along the line of sight, the orientation pattern is irregular and difficult to interpret.

Polarization at infrared, mm, submm

Excellent measurements for magnetic fields in clouds and filaments via dust there! WMAP Page et al. 2006

E. M. Bierman et al. 2011: ApJ A MILLIMETER-WAVE GALACTIC PLANE SURVEY

Correlation of orientation of the fields in clouds with the large-scale Galactic B-field

Li et al. 2006: ApJ 648, 340

(Results of SPARO 2003)

- Mapped large-scale magnetic fields in four GMCs
- Statistically significant correlation with the orientation of the Galactic plane.
- Field direction tends to be preserved during the process of GMC formation.

Planck 2015: Best all-sky B-fields from dust emission

- Magnetic fields in the disk: B // Galactic Plane
- Magnetic fields in filaments: B // filaments

Polarized dust emission

Note: Brightness-weightingadded B along the path! Shown orientations. No B strength, no B direction!

Sky maps from the local+halo fields?

One can make a **B-model** to fit CMB data, but it is hard to unique the model. You can get constraints on any model.

all WMAPs show: B-field // GalacticPlane

Planck 2015: Best all-sky synchrotron

Magnetic fields in the disk: B // Galactic Plane
 Magnetic fields in filaments: B // filaments

Fig. 20. All-sky view of the magnetic field and total intensity of synchrotron emission measured by *Planck*. The colours represent intensity. The "drapery" pattern, produced using the line integral convolution (LIC, Cabral & Leedom 1993), indicates the orientation of magnetic field projected on the plane of the sky, orthogonal to the observed polarization. Where the field varies significantly along the line of sight, the orientation pattern is irregular and difficult to interpret.

Synchrotron emission is co-added from all path with a weight of distance and strength and after Faraday rotation in the interstellar medium

R. Hurt 2008

Ionized Interstellar Medium

Warm ionized medium (WIM): $n \sim 0.1 \text{ cm}^{-3}$;

T ~ 8000 K; *f* ~ 0.2

J0610-2100 +

J0614-3329 + WHAM survey + Hobbes et al: 2005

Sun et al. 2011, A&A, 527, A74

Centr.freq: 4.8/4.963GHz BW: 600 MHz/295 MHz System temp.: 22 -25 K HPBW: 9.5arcmin 1st side lobe: 2% Instr. polarization: <2% Beam efficiency: 67% Gain: 0.164 K/Jy Obs: 2004.8—2009.4

The Sino-German 6cm polarization survey of the Galactic plane

129° ≤ I ≤ 230° : Gao et al. 2010, A&A, 515, A64

129° ≤ I ≤ 230° : Gao et al. 2010, A&A, 515, A64

141° 139° 137° 135° 133° 131° 129° Synchrotron radio emission of Milky Way: We see trees, but not forest! $129^{\circ} \le 1 \le 230^{\circ}$: Gao et al. 2010, A&A, 515, A64

Planck 2015: Best all-sky synchrotron

Magnetic fields in the disk: B // Galactic Plane
 Magnetic fields in filaments: B // filaments

Fig. 20. All-sky view of the magnetic field and total intensity of synchrotron emission measured by *Planck*. The colours represent intensity. The "drapery" pattern, produced using the line integral convolution (LIC, Cabral & Leedom 1993), indicates the orientation of magnetic field projected on the plane of the sky, orthogonal to the observed polarization. Where the field varies significantly along the line of sight, the orientation pattern is irregular and difficult to interpret.

Total Intensity map

1420 MHz

(Reich & Reich 1986)

21cm DRAO+Villa Elisa all-sky polarization map PI at 1.4 GHz (26m DRAO+30m Villa Elisa)

Polarized structures of diffuse emission seen at different RMs yes for trees, not for forest!

RM = -200.0 rad/m2

RMs of Extragalactic radio sources RM Sky: Anti-symmetry! Outliers omitted if very different from surroundings

RMs of Extragalactic radio sources

- RMintrinsic : RM intrinsic to the source;
 - They never know each other: <u>uncorrelated</u> → <u>Random!</u>
 - Location of emission regions: Beam size?
- RMInterGalactic : RM from intergalactic space;
 - weak correlated if with same intervening medium
 - Small values ??
- RMmilkyWay : Foreground RM from our Galaxy;
 - Correlated ~10° with same intervening ISM
 - Strongly depends on the Galactic coordiantes!

RMs of Extragalactic radio sources **RM Sky: Anti-symmetry!** Outliers omitted if significantly different from surroundings

NVSS RM catalog: RM estimated from only 2 IFs of NVSS data Individually: cannot trust! Collectively: Ok!

Taylor et al. (2009)

						1				
-500	-400	-300	-200	-100	0	100	200	300	400	500

3. unknown field strength

RMs of extragalactic sources: Integration of Ne*B//

RMs from extragalactic RM sources near Galactic plane: <u>Consistent with B-Structure from pulsar data!</u>

Magnetic field model based on RMs of background sources

Pulsars: Best probes for Ne and B-field

MPIfR-Bonn Pulsar Group

Widely spread in the Galaxy !

3-D ne & B-field structure!

Pulsars as best probes for Galactic B-field

Polarized + no intrinsic RM: Faraday rotation: RM>0, field toward us

Distance from the Sun: X (kpc)

We got Most of highly valued pulsar RMs

Authors	No. of RMs	No. New RMs
Hamilton & Lyne (1987)	163	119
Rand & Lyne (2004):	27	27
Qiao et al. (1995)	48	33
Van Ommen et al. (1997)	24	2
Han et al. (1999)	63	54
Crawford (2001):	7	7
Mitra et al. (2003):	11	11
Weisberg et al. (2003)	36	17
Han et al. (2006):	223	196
<u>Han et al. (2018):</u>	<u>477</u>	<u>386</u>

Total No. of pulsar RM published: 🚽 1115

Paired probes to measure B-field in a region

Analysis is not limited to *modeling B all the path*, but can *measure B in the region between*! *Significant improvement*! No worry about foreground bubbles! Less sensitive on Dist!

Measuring the B-field in the Norma arm

red: new measurements by Parkes 64m telescope

Measuring B-field in tangential regions!

Measured magnetic field in the Galactic disk by pulsar RM/DM (Han et al. 2006, ApJ 642, 868) • always counterclockwise in arm region!

Distance from the Sun: X (kpc)

We measured radial dependence of regular field strength (Han et al. 2006, ApJ 642, 868)

Han et al. 2018, ApJS, 234, 11

Table 2. Galactic disk zones and their magnetic fields

Region	l-Range	D-Range	DM-Range	No. PSRs	$B_{ }$	B-field	Arrow l	Arrow D
	(°)	(kpc)	$(\mathrm{cm}^{-3}~\mathrm{pc})$	or EGRS	(μG)	Direction	(°)	(kpc)
Quadrant 1								
Near 3-kpc	15 - 25	3.5 - 6.5	350 - 850	25	$+4.0\pm0.7$	ccw	20	5.5
Near 3-kpc $- EGRS$	15-25	6.5 - E	850 - E	71		cw	20	11.0
Scutum	25 - 38	4.0 - 8.0	200 - 800	46	$+0.4\pm0.4$	ccw	32	7.0
Scutum - EGRS	25 - 38	9.5 - E	900 - E	78		20		
Scutum – Sgr	38 - 45	4.0 - 12.0	200 - 500	25	$+3.3 \pm 0.9$	ccw	42	8.5
Scutum-Sgr - EGRS	38 - 45	12.0 - E	500 - E	37		cw	42	13.0
Sagittarius	45 - 60	3.0 - 8.5	100 - 300	30	$+1.4 \pm 1.0$	ccw	50	5.0
Sagittarius – EGRS	45 - 60	8.5 - E	300 - E	176		cw	50	8.5
Local - Perseus	60 - 80	3.5 - 8.0	70 - 250	14	$+0.7\pm0.7$	ccw	73	7.0
Local-Perseus - EGRS	60 - 80	8.0 - E	250 - E	225		cw	73	10.5
Local Q1-Q2	80 - 120	1.0 - 5.0	10 - 200	18	-1.4 ± 0.6	cw	105	2.5
Local Q1-Q2 $-$ EGRS	80 - 120	5.0 - E	200 - E	576		ccw	105	4.0
Outer Q2	120 - 190	-	—			-		
Outer Q3	190 - 250	0.0 - 3.5	0 - 130	13	$+1.3\pm0.4$	cw	235	2
Outer $Q3 - EGRS$	190 - 250	3.5 - E	130 - E	841		ccw	230	3.5
Local Q3-Q4	250 - 270	0.0 - 6.0	30 - 280	20	$+1.1\pm0.5$	cw	260	4.0
Local Q3-Q4 $-$ EGRS	250 - 270	6.0 - E	280 - E	138		ccw	260	6.5
Outer Carina	270 - 282	0.1 - 1.1	50 - 250	23	$+0.8\pm0.5$	cw	276	0.7
Outer Carina – EGRS	270 - 282		250 - E	26		ccw	276	9.0
22		5	Quadrant 4					
Carina	282-294	2.0 - 4.0	250 - 550	22	-1.2 ± 1.0	ccw	288	3.0
Carina - EGRS	282 - 294	4.0 - E	550 - E	8		cw	288	11.0
Carina – Crux	294-304	2.0 - 10.0	100 - 600	21	$+1.9\pm0.3$	cw	299	7.0
Carina-Crux - EGRS	294-304	10.0 - E	600 - E	13		ccw	299	12.0
Crux	304 - 316	4.0 - 13.0	200 - 800	38	-1.6 ± 0.5	ccw	310	7.5
Crux - EGRS	304-316	13.0 - E	800 - E	13		cw	310	13.0
Crux - Norma	316 - 325	3.0 - 11.0	250 - 700	9	$+1.3\pm0.3$	cw	320	6.0
Crux-Norma - EGRS	316-325	11.0 - E	700 - E	6		ccw	320	12.0
Norma	325 - 335	4.0 - 6.5	300 - 800	15	-3.7 ± 0.6	ccw	330	6.5
Norma - EGRS	325 - 335	10.0 - E	900 - E	20		cw	330	12.5
Far 3-kpc	335 - 350	8.0 - 13.5	400 - 700	23	-3.1 ± 1.1	ccw	343	12.5
Far 3 -kpc – EGRS	335 - 350	13.5 - E	700 - E	23		cw	343	15.5

The global magnetic field model Our model for the Galactic disk field assumes logarithmic in the Galactic disk

spiral fields of pitch angle $\psi = 11^{\circ}$ (Hou & Han 2014) with a radial and z dependence given by

$$B(R, z) = B_0 \exp(-R_G/A) \exp(-|z|/H),$$
 (3)

Table 5 Radial Zones for the Model Spiral Disk Field

Index <i>i</i>	1	2	3	4	5	6	7
$R_s(i)$ (kpc)	3.0	4.1	4.9	6.1	7.5	8.5	10.5
$B(i)(\mu G)$	45	-30	63	-47	33	-87	

Based on RMs of pulsars and background sources

Based on RMs of background sources

10

-20 kpc

Han et al. 2018 ApJS 234, 11

Auft for

α

2

Φ

20

60.

Comparison of two magnetic field models in the Galactic disk

Comparison of two magnetic field models in the Galactic disk

Measuring the B-field fluctuation vs scales by using pulsar RMs and DMs

Distance from the Sun: X (kpc)

Many Simulations of dynamos

--- check spatial B-energy spectrum & its evolution
 e.g. Magnetic energy distribution on different spatial scales (k=1/λ)

No measurements of the B-energy spectrum !

Spatial magnetic energy spectrum of our Galaxy (Han et al. 2004, ApJ 610, 820)

The Galactic distribution of Zeeman data with much more sensitive observations

Scutum Conta

urus Ann

To trace the B-fields with spiral arms?

rseus Al

Maser spots in the star-forming region as B-field tracers

Han & Zhang (2007, A&A 464, 609)

- Collect Zeeman splitting data of maser spots in HII and star formation regions
- Spots in one region always have the same field orientation!

B-field from maser spots

Han & Zhang (2007, A&A 464, 609)

- Collect Zeeman splitting data of maser spots in HII and star formation regions
- Spots in one region always have the same field orientation!

Source	Alias	Dist	Freq	B_l	B_m	B_u	Obs.	Ref.
(GL+GB)	name	(kpc)	(MHz)	(mG)	(mG)	(mG)	telescope	
4400	W3(OH)	2.2	13441	5.6	10.2	11.3	VLBA	bd98
	W3 OH	2.2	6035	7.1	8.0	8.7	Eff	bdwc97
1111		2.2	6031	3.3	4.7	8.1	Eff	bdwc97
****	3000	2.2	13441	6.9	8.2	11.3	GBT	frm05
		2.2	13434		10.3		GBT	frm05
G196.454-1.677	S269	3.8	1665	-4.2	*	-4.0	VLBA	fraz05
		3.8	1665		-4.5		VLBA	fraz05
G208.994-19.38	Orion	0.5	1665		*	-2.5	VLBI	hmr+77
G213.706-12.606	Mon R2	0.9	1665	-2.6	-2.4*	-2.2	VLBA	fraz05
		0.9	1667	-2.5	-2.5	-2.2	VLBA	fraz05
		0.9	1665		-3.4		VLA-A	fram03
G285.263-0.050		4.3	6035		10.0		PKS	cv95

The Galactic distribution of Zeeman data

In situ AU-scale-B directions coherent in many kpc scale!

Han & Zhang 2007, A&A 464, 609

The Galactic distribution of Zeeman data

In situ AU-scale-B directions coherent in many kpc scale!

The most updated results of Magnetic fields in our Milky Way

- Diverse approaches reveal B field in the Milky Way
- Polarization due to dusts
 - -Star light polarization: B// Galactic Plane or filaments
 - -Polarizations via CMB obs: B// Galactic Plane or filaments
- Polarization of diffuse synchrotron emission
 - -co-added from different distance, depolarized
 - -show many structures related to objects or filaments
 - -so do the polarization maps from different RMs of RM synthesis
- Faraday Rotation of background radio sources (EGRs):
 - -Excellent indication for B-field in the Galactic halo
 - -useful constrain for the B-field structure in the disk
- Faraday Rotation of pulsars:
 - –Best probes for B-field in the Galactic disk: structure and strength, because decomposition with ne --- farther B-directions conf. RMs of EGRs –The unique measurements for $E_B(k)$
- Masers Zeeman splitting in star formation regions:

–show B correlations, and consistent with large-B structure
 –potentially good probes for disk field

The most updated results of Magnetic fields in our Milky Way

- Diverse approaches reveal B field in the Milky Way
- Polarization due to dusts
 - -Star light polarization: B// Galactic Plane (Clarients
 - -Polarizations via CMB obs: B// Great Plane or filaments
- Polarization of diffuse for hor eniston
 - -co-added from the ent distatine depolarized
 - -show many structure Celled to objects or filaments
 - -so do the polarization maps from different RMs of RM synthesis
- Faraday Rotation of background radio sources (EGRs):
 - -Excellent indication for B-field in the Galactic halo
 - -useful constrain for the B-field structure in the disk
- Faraday Rotation of pulsars:
 - -Best probes for B-field in the Galactic disk: structure and because decomposition with ne --- farther B-direction 91.
 - –The unique measurements for $E_B(k)$
- Masers Zeeman splitting in star formation
 - -show B correlations, and consistent with large Structure -potentially good probes for disk field

The most updated results of Magnetic fields in our Milky Way

• Diverse approaches reveal B field in the Milky Way

Polarization due to dusts

-Star light polarization: B// Galactic Plane or filaments -Polarizations via CMB obs: B// Galactic Plane or filaments

Polarization of diffuse synchrotron emission

-co-added from different distance, depolarized
-show many structures related to objects or filaments
-so do the polarization maps from different RMs of RM synthesis

• Faraday Rotation of background radio sources (EGRs):

-Excellent indication for B-field in the Galactic halo -useful constrain for the B-field structure in the disk

• Faraday Rotation of pulsars:

–Best probes for B-field in the Galactic disk: structure and strength, because decomposition with ne --- farther B-directions conf. RMs of EGRs –The unique measurements for $E_{B}(k)$

Masers Zeeman splitting in star formation regions:

-show B correlations, and consistent with large-B structure -potentially good probes for disk field

The most updated results of Magnetic fields in our Milky Way

• Diverse approaches reveal B field in the Milky Way

Polarization due to dusts

-Star light polarization: B// Galactic Plane or filaments -Polarizations via CMB obs: B// Galactic Plane or filaments

Polarization of diffuse synchrotron emission

-co-added from different distance, depolarized
-show many structures related to objects or filaments
-so do the polarization maps from different RMs of RM synthesis

• Faraday Rotation of background radio sources (EGRs):

-Excellent indication for B-field in the Galactic halo -useful constrain for the B-field structure in the disk

• Faraday Rotation of pulsars:

–Best probes for B-field in the Galactic disk: structure and strength, because decomposition with ne --- farther B-directions conf. RMs of EGRs –The unique measurements for $E_B(k)$

Masers Zeeman splitting in star formation regions:

-show B correlations, and consistent with large-B structure -potentially good probes for disk field

The most updated results of Magnetic fields in our Milky Way

See references for the Galactic magnetic fields:

Han JL, et al. 1997, A&A 322, 98 Han JL, et al. 1999, MNRAS 306, 371 Han JL, et al. 2004, ApJ 610, 820 Han JL, et al. 2006, ApJ 642, 868 Han JL, et al. 2018, ApJS 234, 11

a reference for the **Cosmic ray deflection in B-fields**:

Jiang YY, et al. 2010, ApJ 719, 459

Thanks for your attension! a review on interstellar and intergalactic magnetic fields by

Han JL, 2017, ARA&A 55, 111