Ultra-High-Energy Cosmic Rays from Radio Galaxies (pt.1)

An astrophysical explanation of the UHECR data

Ruhr Astroparticle and Plasma Physics Center Björn Eichmann, Ruhr-Universität Bochum in collaboration with J. Rachen, L. Merten, A. van Vliet, J. Tjus UHECR 2018, Paris

RAPP

Björn Eichmann

The Basic Simulation Setup

- SOURCES:
 - Radio-loud AGNs/ Radio Galaxies (RGs)*
- ENVIRONMENT:
 - Local extragalactic magnetic field (EGMF) up to 120Mpc distance**
 - Photon fields by CMB & IRB

• **PROPAGATION** of UHECRs:

 Performed with CRPropa3***

*van Velzen et al. (2012); **Dolag et al. (2005); ***Batista et al., 2016

Björn Eichmann

The Sources

- Local RGs $(d \le 120 \text{ Mpc})$:
 - 121 observed*
 - 617 low luminous, 100 invisible**

*van Velzen et al. (2012); **derived from Radio Luminosity Function by Mauch & Sadler (2007)

Björn Eichmann

The Sources

- Local RGs $(d \le 120 \text{ Mpc})$:
 - 121 observed*
 - 617 low luminous, 100 invisible**
- Non-local RGs
 (d > 120 Mpc):
 - Average contribution up to z = 2: Continuous Source Function (CSF)**

*van Velzen et al. (2012);**derived from Radio Luminosity Function by Mauch & Sadler (2007)

Björn Eichmann

The Sources

- Local RGs $(d \le 120 \text{ Mpc})$:
 - 121 observed*
 - 617 low luminous, 100 invisible**
- Non-local RGs
 (d > 120 Mpc):
 - Average contribution up to z = 2: Continuous Source Function (CSF)**
 - Ultra-luminous RGs:
 Cygnus A

*van Velzen et al. (2012);

**derived from Radio Luminosity Function by Mauch & Sadler (2007)

The Sources & their Characteristics

• CR power is related to the radio luminosity (Willott et al., 1999):

$$Q_{\rm cr} = Q_0 \, \boldsymbol{g_{cr}} \, L_{1.1 \rm GHz}^{6/7}$$
 with $1 \le \boldsymbol{g_{cr}} \le 50$

> Absolute normalization of the CR flux

• Maximal rigidity is related to CR power (using `Hillas criterion`):

$$\widehat{R} = oldsymbol{g}_{acc} \sqrt{Q_{
m cr}/c}$$
 with $0.01 \leq oldsymbol{g}_{acc} \leq 1$

- Acceleration is constrained by CR escape.
- Spectral index at the sources from shock acceleration theory:

 $dN/dE \propto E^{-a}$ with $1.7 \leq a \leq 2.2$

- Abundances at the sources mostly solar f_{\odot} , but enable exceptions: $f = f_{\odot} Z^{q}$ with $0 \le q \le 2$
- Source evolution parameter fixed to m = 3 (minor influence!)

Best-Fit Results (individual values for Cyg A & Cen A needed)

	a	$\bar{g}_{ m cr}$	$g_{\rm cr}^{\rm CenA}$	$g_{ m cr}^{ m CygA}$	$g_{ m acc}$	$g_{ m acc}^{ m CygA}$	q^{Ce}	$^{\mathrm{nA}}\chi^2$
EPOS-LHC	1.85	7.73	41.54	43.94	0.127	0.059	2	1.1
QGSJetII-04	1.82	6.31	21.20	48.84	0.220	0.056	2	1.4
Sibyll2.1	1.83	6.67	24.77	47.90	0.19	0.056	2	1.3

Björn Eichmann

Best-Fit Results (energy spectrum & composition)

1. CSF is subdominant at $E \gg 5 \text{EeV}$

Björn Eichmann

Best-Fit Results (energy spectrum & composition)

- **1. CSF** is subdominant at $E \gg 5 \text{EeV}$
- **2.** Cen A dominates local contribution and provides heavy initial abundances ($f_H \sim 0.7$, $f_{He} \sim 0.24$, $f_{CNO} \sim 0.04$, $f_{Fe} \sim 0.02$)

Björn Eichmann

Best-Fit Results (energy spectrum & composition)

- **1. CSF** is subdominant at $E \gg 5 \text{EeV}$
- **2.** Cen A dominates local contribution and provides heavy initial abundances ($f_H \sim 0.7$, $f_{He} \sim 0.24$, $f_{CNO} \sim 0.04$, $f_{Fe} \sim 0.02$)
- **3.** Cygnus A dominates non-local contribution and provides solar init. abund. ($f_H \sim 0.92$, $f_{He} \sim 0.08$, $f_{CNO} \sim 0.001$, $f_{Fe} \sim 0.00003$)

Björn Eichmann

Best-Fit Results (arrival directions)

- Estimate **rms deflection of Cygnus A events** using $\theta_{rms} \simeq 0.8^{\circ} \bar{Z} \left(\frac{\bar{E}}{100 \text{ EeV}}\right)^{-1} \left(\frac{d}{10 \text{ Mpc}}\right)^{1/2} \left(\frac{\lambda_c}{1 \text{ Mpc}}\right)^{1/2} \left(\frac{B_{rms}}{1 \text{ nG}}\right)$
- Compare multipole moments with observations (without fitting):

Conclusions

Thus: Radio Galaxies are able to explain the UHECR data by using 7 physics based parameters:

- Dominant contribution of Cen A (heavy comp.) and Cyg A (solar comp.).
- > Dipol at E > 8 EeV requires significant deflection of Cyg A events at $E \sim 8$ EeV.
- Average non-local contribution needs to be subdominant at UHE.
- But: Contribution of M87 and Fornax A hard to constrain within this scenario!

Conclusions & Outlook

Thus: Radio Galaxies are able to explain the UHECR data by using 7 physics band parameters:

- But: Contribution of M87 and this scenario!

And what about:

- EGMF effects for CRs from ultra-luminous RGs beyond 120Mpc?
- CSF contribution below the ankle?
- Physics based difference between northern & southern UHECRs?

Outlook

And what about Include:

- EGMF effects for CRs from ultra-luminous RGs beyond 120Mpc
- CSF contribution below the ankle
- Physics based difference between northern & southern UHECRs

Outlook

Björn Eichmann

Take-home message

Radio Galaxies (with a dominant contribution by Cen A & Cyg A) are able to explain the UHECR data using reasonable physical constraints (`Fermi` spectrum, pred. solar abundances, normalized flux, etc.)

Björn Eichmann

Local EGMF by Dolag et al. (2005)

- Seed field assumptions:
 - Uniform magnetic seed field $B_0 = 2 \times 10^{-12} {
 m G}$
 - Arbitrary initial orientation
- Cosmological MHD simulations determine the EGMF structure
 - $B_{rms} \simeq 1 \text{ nG}$
 - Up to a distance of $\,{\sim}120 \text{Mpc}$
- Sampled with a resolution of 14.6 kpc & stored in a multiresolution grid using 'Quimby' (Müller, 2016)

Björn Eichmann

The Sources & Their Characteristics

- **CR power** from the jet power: $Q_{cr} \simeq \frac{4}{7}Q_{jet}$, using minimum jet energy condition (Pacholczyk, 1970) $Q_B \simeq \frac{3}{4}(Q_e + Q_{cr}) \& Q_{cr} \gg Q_e$
- Jet power from extended radio emission (Willott et al., 1999):

$$\begin{array}{l} Q_{cr} = \frac{4}{7} \; Q_{jet} = g_{cr} \; Q_{jet,0} \\ \text{with} \; 1 \leq g_{cr} \leq 50 \end{array} \quad \begin{array}{l} \frac{Q_{jet,0}}{\text{erg/s}} = 3 \times 10^{45} \left(\frac{P_{151}}{10^{28} \, \text{WHz}^{-1} \text{sr}^{-1}}\right)^{6/7} \end{array}$$

• **Maximal Rigidity** using *min. jet energy cond.* $Q_{jet} = \frac{7}{3}Q_B = \frac{7}{3}c\beta_{jet}\pi r^2\frac{B^2}{8\pi}$ and *Hillas criterion* $\hat{R} \equiv \frac{E_{max}}{Ze} = \frac{\beta_{sh}}{f_{diff}}Br$

$$\widehat{R} \simeq g_{acc} \sqrt{g_{cr} Q_{jet,0}/c}$$
, with $g_{acc} = \sqrt{\frac{6\beta_{sh}^2}{f_{diff}^2 \beta_{jet}}}$

Björn Eichmann

Average non-local source contribution

- EGMF structure limits the (3D) simulation volume
- > Analytic construction of the *Continuous Source Function (CSF)*:

$$\Psi_{0}(R) = \frac{dN_{cr}}{dR \, dt \, dV} = \frac{1}{eZ} \int_{\widehat{Q}}^{\check{Q}} dQ \, S_{cr}(R, \widehat{R}) \, \Phi_{\mathrm{RL}}(Q),$$

with $\widehat{R} = g_{acc} \sqrt{\frac{Q_{cr}}{c}}$ and radio lum. func. Φ_{RL} (Mauch & Sadler, 2007)

• Uniform 1D-distribution of sources with an individual spectrum $S_{cr}(R, \hat{R}) = v_0(a) Q_{cr}(R/\hat{R})^{-a} \Theta(\hat{R} - R)$

with a spectral normalization correction $v_0(a)$.

- Continuation of the local source sample (and its features!)
- > 1D-Simulation to account for *propagation effects* (energy losses)
- ▶ Including source evolution effects: $\Psi(R, z) = \Psi_0(R) (1 + z)^{m-1}$, $z \le 2$

Average non-local source contribution

- EGMF structure limits the (3D) simulation volume
- > Analytic construction of the **Continuous Source Function (CSF)**: $\Psi_0(R) = \frac{dN_{cr}}{dR \, dt \, dV} = \frac{1}{eZ} \int_{\widehat{Q}}^{\check{Q}} dQ \, S_{cr}(R, \widehat{R}) \, \Phi_{\rm RL}(Q),$

Björn Eichmann

Comparison of CSF in local regime

Björn Eichmann Ultra-High-Energy Cosmic Rays from Radio Galaxies

RAPP

First-Fit Approach (all the same, except Cygnus A)

	a	$\bar{g}_{ m cr}$	$g_{ m cr}^{ m CygA}$	$\bar{g}_{ m acc}$	$g_{ m acc}^{ m CygA}$	\overline{q}	χ^2
EPOS-LHC	1.7	1.94	22.17	0.6	0.11	2	5.4
QGSJetII-04	1.76	2.23	32.60	0.6	0.090	1.84	5.6
Sibyll2.1	1.83	2.29	42.51	0.6	0.085	1.97	5.7

Björn Eichmann

First-Fit Approach (all the same, except Cygnus A)

	a	$\bar{g}_{ m cr}$	$g_{\rm cr}^{\rm CygA}$	\bar{g}_{acc}	$g_{ m acc}^{ m CygA}$	\overline{q}	χ^2
EPOS-LHC	1.7	1.94	22.17	0.6	0.11	2	5.4
QGSJetII-04	1.76	2.23	32.60	0.6	0.090	1.84	5.6
Sibyll2.1	1.83	2.29	42.51	0.6	0.085	1.97	5.7

Björn Eichmann

Best-Fit Results (arrival directions)

Estimate **rms deflection of Cygnus A events** using $\theta_{rms} \simeq 0.8^{\circ} \bar{Z} \left(\frac{\bar{E}}{100 \text{ EeV}}\right)^{-1} \left(\frac{d}{10 \text{ Mpc}}\right)^{1/2} \left(\frac{\lambda_c}{1 \text{ Mpc}}\right)^{1/2} \left(\frac{B_{rms}}{1 \text{ nG}}\right)$ $E \geq 8 \text{ EeV}$: $E \geq 40 \text{ EeV}$: Arrival direction using deflected Cyg A events for $E \ge 8.0 \text{EeV}$ Arrival directions using deflected Cyg A events for $E \ge 40.0 \text{EeV}$ -30 -30 -2.8 -1.8-16 -14 -1.2 -1.0 log(N/%) $\log(N/9)$

using
$$\lambda_c^{1/2} B_{rms} = 6 \text{ Mpc}^{1/2} \text{ nG}$$

Björn Eichmann

Advanced methods

Include EGMF effects for CRs from ultra-luminous RGs beyond 120Mpc by using an extended EGMF in an inverted simulation setup

Check mean deflection dependence on distance and spatial position for E⁻²-spectrum above 1EeV

Björn Eichmann