High-energy Emissions from Neutron Star Mergers

Pennsylvania State University (JSPS oversea research Fellow; IGC Fellow)

Shigeo S. Kimura

References 1) SSK, Murase, Bartos et al. 2018, PRD, 98, 043020 2) SSK, Murase, Meszaros, Kiuchi, 2017, ApJL, 848, L4 3) SSK, Murase, Meszaros, ApJ accepted (arXiv:1807.03290)

Collaborators Peter Meszaros, Kohta Murase (Pennsylvania State University) Kunihito Ioka, Kenta Kiuchi (Kyoto University) Imre Bartos (University of Florida) Ik Siong Heng (University of Glasgow)

Outline

- NS mergers before GW 170817
- GW 170817
- HE-neutrinos from NS mergers (SSK, Murase, Bartos et al. 2018, PRD; SSK, Murase, Meszaros, Kiuchi, 2017, ApJL)
- Cosmic Ray production at NS merger remnants

(SSK, Murase, Meszaros, ApJ accepted)

• Summary

NS mergers before GW170817

NS mergers as multi-messenger sources Gravitational Wave Metzger & Berger 2012 Inspiral to merger: Jet-ISM Shock (Afterglow) **GW** emission Optical (hours-days) Radio (weeks-years) Progenitor of SGRBs: Ejecta–ISM Shock ٠ Radio (years) $->\gamma$ -ray, X-ray, neutrino θ_{obs} GRB Kilonova/Macronova ٠ Kilonova Optical (t ~ 1 day) -> Infrared, opt Merger Ejecta Afterglow Tidal Tail & Disk Wind ٠ v ~ 0.1–0.3 c -> Radio, X-ray, cosmic-rays BH

Short Gamma-ray Bursts

see e.g. Nakar 2007, Berger 2014

- Bright burst of gamma-rays at cosmological distance
- $L_{iso} \sim 10^{50} 10^{52} \text{ erg/s}, T_{dur} \sim 1 \text{ sec}, E_{pk} \sim 0.1 1 \text{ MeV}$
- Central engine (BH or NS) produces jets
 —> internal dissipation produces X-rays and γ-rays

Afterglows of SGRBs

see e.g. Nakar 2007, Sakamoto et al. 2011, Kisaka et al. 2017

- Prompt emission is followed by afterglows
- Standard afterglow: Forward shock model, power-law decay
- Extended Emission, plateau emission, X-ray flares have similar features to prompt bursts —> Late-time engine activity?
- Late time activities have comparable total energy to prompt burst

Macronova/Kilonova

z (km)

 NS merger creates ejecta consisting of neutron-rich nuclei

8

- Decay of n-rich nuclei powers opt/IR transient for days
- a few macronova candidates are observed in afterglows of SGRBs as an excess in IR

Hotokezaka et al. 2013

GW 170817

¹⁰ GW170817

LIGO 2017 (Multi-messenger paper)

The first detection of NS-NS merger event by GW, radio, IR/opt/UV, Xray, MeV γ-ray

٠

Prompt emission unusually faint SGRBs

Kilonova/Macronova

BNS merger produces r-process elements

Afterglow Mooley et al. 20

Mooley et al. 2018; Lazzati et al. 2018; Margutti et al. 2018

slowly brightening emission requires structure

Flux ~ t^{0.7} top-hat model is ruled out two models are proposed

- Weak γ-rays for on-axis observer
- quasi-isotropic cocoon with radial structure

- strong γ-rays for on-axis observer
- Polar structure with collimated jet

- -> collimated relativistic jet
- $E_{iso} \sim 10^{52} \text{ erg}, \Theta_j \sim 0.05 \text{ rad}$ —> consistent with canonical SGRBs

Summary of GW170817

- First NS-NS merger event seen by GWs and EMs
- Opt/UV/IR counterparts
 -> r-process element production
- Radio & X-ray afterglows
 —> consistent with SGRBs seen by off-axis observer

NS mergers trigger SGRBs NS mergers produce heavy elements

Questions after GW170817

- Can we detect HE neutrinos from NS mergers?
- What happens if they have late time activities?
- What is expected for Choked jet events?
- Hadronic CR production by NS mergers?

- Estimate Neutrino Emissions including late-time activity and choked events
- Discuss CR production by NS mergers

High-Energy Neutrinos from Neutron Star mergers

1. High-Energy Neutrino from successful SGRBs SSK, Murase, Meszaros, Kiuchi, 2017, ApJL, 848, L4 (This work was done before the detection of GW170817)

2. Trans-Ejecta Neutrinos from Choked Jets SSK, Murase, Bartos et al. 2018, PRD, 98, 043020

High-Energy Neutrinos from Neutron Star mergers

1. High-Energy Neutrino from successful SGRBs SSK, Murase, Meszaros, Kiuchi, 2017, ApJL, 848, L4 (This work was done before the detection of GW170817)

2. Trans-Ejecta Neutrinos from Choked Jets SSK, Murase, Bartos et al. 2018, PRD, 98, 043020

Multi-component One-zone model

- Calculate v fluence from each component by one-zone model
- Power-law proton injection with index 2: $E_p^2 dN_p/dE_p \sim \xi_p E_{\gamma,iso} / ln(E_{p,max}/E_{p,min})$
- Proton cooling processes: synchrotron & adiabatic coolings
- μ and π also cool down by synchrotron & adiabatic coolings

$$E_{\nu_{\mu}}^{2} \frac{dN_{\nu_{\mu}}}{dE_{\nu_{\mu}}} \approx \frac{1}{8} f_{p\gamma} f_{\sup \pi} E_{p}^{2} \frac{dN_{p}}{dE_{p}}$$

$$f_{p\gamma} = \frac{t_{p\gamma}^{-1}}{t_{p,cl}^{-1}} \qquad f_{\sup \pi} = 1 - \exp(-\frac{t_{\pi,cool}}{t_{\pi,dec}})$$

Neutrino Fluence

- Two breaks: soft photon spectrum & pion cooling
- Extended emission (EE) can produce neutrinos efficiently
- $\Gamma \downarrow$ or $R_{dis} \downarrow \longrightarrow$ photon density $\uparrow \longrightarrow$ fluence $\varphi \uparrow$

Coincident Detection Probability with Gravitational Waves

NS–NS ($\Delta T = 10$ years)	IC (all)	Gen2 (all)
EE-mod-dist-A	0.11–0.25	0.37–0.69
EE-mod-dist-B	0.16-0.35	0.44–0.77
EE-opt-dist-A	0.76–0.97	0.98–1.00
EE-opt-dist-B	0.65–0.93	0.93-1.00

Wanderman & Piran 15, Nakar + 06

- Assume that all the NS mergers within 300 Mpc are detected by GW
- R_{SGRB}~ 4 10 Gpc⁻³ yr⁻³ & half of SGRBs have EE
 N ~ 2-5 for NS-NS (10 yr) within GW horizon (300 Mpc)
- For optimistic case, simultaneous detection with GW is highly probable even with IceCube
- Fore moderate case, IceCube-Gen2 is likely to detect neutrinos

Implications for GW170817

- The jet is off-axis —> the flux is considerably lower
- This event is in southern sky
 —> atmospheric noise is strong for lower energy
- Extended emission is not observed from this event —> neutrinos from EE should not be observed

High-Energy Neutrinos from Neutron Star mergers

1. High-Energy Neutrino from successful SGRBs SSK, Murase, Meszaros, Kiuchi, 2017, ApJL, 848, L4 (This work was done before the detection of GW170817)

2. Trans-Ejecta Neutrinos from Choked Jets SSK, Murase, Bartos et al. 2018, PRD, 98, 043020

Schematic Picture

- swept-up ejecta forms cocoon surrounding the jet
 push the jet inward —> form collimation shocks
- Velocity fluctuations —> internal shocks
- · Jet head cannot accelerate particles due to high density

Critical Energies

- High-photon density —> Calorimetric system
- Both shock can accelerate CRs up to a few PeV
- Collimation shock: pion synchrotron + low Γ (~3) $E_{\pi,syn} \sim 0.2 \text{ TeV} \longrightarrow E_{V} < \text{TeV}$
- Internal Shock: adiabatic cooling + high Γ (~300) $E_{\pi,ad} \sim 1 \text{ PeV} \longrightarrow E_{V} \sim 100 \text{ TeV}$
- We focus on Internal Shock neutrinos with E > TeV

Neutrino Fluence from Choked Jets

- Neutrino spectrum is flat for ~1-100 TeV
- Bethe-Heitler process suppresses vs for GeV-TeV

Detection Probability Coincident with GWs

Number of detected neutrinos from single event at 40 Mpc

model IceCul	be (up	+hor) IceCube (down) G	en2 (up+	-hor)
${ m A}$ (Optimistic)	2.0	0.16	8.7	
${ m B}$ (Moderate)	0.11	7.0×10^{-3}	0.46	

Number of detected neutrinos from single event at 300 Mpc

model IceCu	be (up+hor) IceCube (down)	Gen2	(up+	hor)
${ m A}$ (Optimistic)	0.035	2.9×10^{-3}		0.15	
${ m B}$ (Moderate) 1	$.9 \times 10^{-3}$	1.3×10^{-4}	8.1	$l \times 10^{-}$	3

- At 40 Mpc, detection is possible even with IceCube
 —> neutrino obs. can put a limit on physical quantities
- At 300 Mpc, detection is challenging even with Gen2 —> stacking technic is important

Detection Probability Coincident with GWs

- Merger rate: R~1500 Gpc⁻³ yr⁻¹
- Beaming factor: $f_b \sim 0.045$ —> on axis event rate: $R_{on} \sim 4 \text{ yr}^{-1}$ (d < 300 Mpc)
- IceCube can detect neutrinos with a few years of operation with the optimistic model
- Gen2 can detect a coincident neutrino with 10-year operation even for the moderate model

$GW+neutrino detection rate [yr^{-1}]$				
model A (Optimistic) B (Moderate)	IceCube ((up+hc 0.38 0.024	or+down)	Gen2 (up+hor) 1.2 0.091

Detection Probability Coincident with GWs

CR production at NS Merger Remnants

SSK, Murase, Meszaros, ApJ accepted (arXiv:1807.03290)

NS Merger Remnants (NSMRs)

- Interaction between NS merger ejecta and ISM —> forward shock produces CRs analogous to SNRs
- NS mergers produce faster ejecta (~0.3c) than SNRs (~0.03c)
 —> Between "knee" and "ankle" e.g. Tanaka et al. 2017
- NS merger rate: R~1500 Gpc⁻³ yr⁻¹ LIGO (Multi-messenger) 2017
 —> CR production rate in the Galaxy: ~ 1% of SNR
 - -> enough to explain CRs above "knee"

Model

- Maximum energy: t_{acc} = t_{age} with Bohm diffusion
 t_{dec} Time
 E_{max} increases in ballistic phase and decreases in Sedov phase
 E_{max} ~ 20 PeV for protons, 500 PeV for iron nuclei at t=t_{dec}
- Escape limited model: Ohira et al 2010
 CRs with E~E_{max} can escape from NSMRs
 low energy CHs cannot escape
 Time integration gives power-law spectrum
- mass-charge ratio dependent injection: injection efficiency K_{ip}~ (A_i/Z_i)² Caprioli et al. 2017

Vei

Emax

10²

Spectrum on Earth

- Slight hardening of total spectrum at E~10 PeV
- Light element spectrum at E~10-100 PeV
- If NS mergers leave magnetars as a central remnant, the magnetar injects energies to ejecta by magnetar winds
 —> UHE CR production might be possible Fang & Metzger 2017 (talk by Decoene for deferent scenario)

Summary

Summary

- NS mergers are interesting multi-messenger sources
- Neutrino observations associated with SGRBs can be detected or put some limit with IceCube-Gen2
- Neutrinos observation from choked jet system may put some constraint on physical parameters without EM
- Galactic NSMRs are suitable CR sources between knee and ankle

Thank you for your attention

Backup

Gamma-ray Bursts

- The brightest explosion in the Universe: see e.g. Kumar & Zhang 2015 $L_{iso} \sim 10^{50} - 10^{52}$ erg/s, $E_{iso} \sim 10^{50} - 10^{53}$ erg, $E_{pk} \sim 0.1 - 1$ MeV
- · Events in the cosmological distance
- Very short variability & Very high luminosity
 —> Relativistic beaming is necessary
- Classified into two groups:
 Short (T₉₀ < 2 sec) & Long (T₉₀ > 2 sec)

Why Neutrinos?

	Neutrino	Photons
Transparency	Be able to see the inside deeply	Only see the surface due to absorption
Probe for hadronic CRs	Efficiently Produced only from protons	Produced from both electron and protons
Multi-messenger	always observe all sky	Limited field of view

Difficulty for Neutrino Astronomy

- Low detection sensitivity (~10⁻⁴ erg/cm² for PeV range)
- Low angular resolution (~1 deg for track, ~10 deg for shower)
- strong atmospheric noise (for lower energies of < 100 TeV)

Astrophysical Neutrinos

Halzen+17

- IceCube reported TeV-PeV astrophysical neutrinos
- Isotropic arrival direction —> extragalactic origin

IceCube GRB Analysis

 Using the timing and position information of each GRB, IceCube put the limit on GRB associated neutrinos
 –> GRB cannot be a source of observed neutrinos

IceCube GRB Analysis

These analyses focus on the prompt phase afterglow phase is not constrained SGRBs are minority —> constraint is not strong

Afterglow

slowly brightening emission requires structure

Detection Probability

Expected number of v events:

 $\overline{\mathcal{N}_{\mu}} = \int \phi_{\nu} A_{\rm eff}(\delta, E_{\nu}) dE_{\nu},$

Detection probability is poisson:

 $p_k = \overline{\mathcal{N}}^k \exp(-\overline{\mathcal{N}})/k!$

- Assume distribution of Γ $F(\Gamma) = \frac{dN_{\Gamma}}{d\ln\Gamma} = F_0 \exp\left(-\frac{(\ln(\Gamma/\Gamma_0))^2}{2(\ln(\sigma_{\Gamma}))^2}\right)$
- Estimate the detection probabilities

$$P_k = \int d\Gamma F_{\Gamma} p_k$$
$$P(\mathcal{N}_{\mu} \ge 1) = 1 - P_0$$

Particle Acceleration

- Particle acceleration requires sharp velocity jump in λ_{mfp}
- High upstream density —> no particle acceleration
 high density —> radiation pressure dominant @ down stream
 —> photons diffuse to upstream —> decelerate the upstream fluid
 —> gradual velocity change (Radiation Mediated Shock)

Particle Acceleration

- Cosmic-ray production requires high Lorentz factor jets $\Gamma \sim 200$ for internal shocks, $\Gamma \sim 500$ for collimation shocks
- High Γ for internal shock leads to larger dissipation radius -> inconsistent with our assumption

Critical Energies

Choked or Successful?

Ejecta of NS Merger

- NS mergers creates fast & massive outflows
- Modelings of kilonova/macronova for GW170817 $-> M_{ej} \sim 0.01-0.05 M_{sun}$, & V_{ej}~0.1-0.3c
 - $-> E_{k,NSM} \sim 10^{51} \text{ erg}$
- comparable kinetic energy to SNe
- higher velocity than SNe,

e.g. LIGO+17