

A next-generation ground array for the detection of ultrahigh-energy cosmic rays: the Fluorescence detector Array of Single-pixel Telescopes (FAST)

Toshihiro Fujii (ICRR, University of Tokyo, <u>fujii@icrr.u-tokyo.ac.jp</u>) Max Malacari, Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath, Miroslav Hrabovsky, Dusan Mandat, John Matthews, Xiaochen Ni, Libor Nozka, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Stan Thomas, Petr Travnicek (The FAST Collaboration) UHECR 2018, Paris, France, 12th October 2018

Results of energy spectrum, mass composition and anisotropy

AGASA

HiRes

Telescope Array Experiment

Pierre Auger Observatory

yr sr]	
10 ⁶	
xposur	- AGASA/HiR
^ப 10 ⁵	~ 100 km ²
10 ⁴	HiRo
10 ³	AGASA
	- Fly's Eye
199	90 1995 2000

★ Target : > 10^{19.5} eV, ultra-high energy cosmic rays (UHECR) and neutral particles ★ Huge target volume ⇒ Fluorescence detector array Fine pixelated camera Too expensive to cover a huge area

Smaller optics and single or few pixels

Fluorescence detector Array of Single-pixel Telescopes

Low-cost and simplified telescope

Fluorescence detector Array of Single-pixel Telescopes

Fluorescence detector Array of Single-pixel Telescopes

Salinas del Salinas El Diamante Va. Voraniega (Club de pesto San Ratael) Na	✦ Each telescope: 4 PMTs, 30°×30° field of view ()
Embalse El Nihuil GRADOS	 Reference design: 1 m² aperture, 15°×15° per PMT
AGUA DE CANSO A T726 1	 Each station: 12 telescopes, 48 PMTs, 30°×3 FoV.
	 Deploy on a triangle grid with 20 km spacing, li "Surface Detector Array".
	 With 500 stations, a ground coverage is 150,00
1	 100 million USD for detectors
800 1000 Time (100 ns)	5 years: 5100 events (E > 57 EeV), $650 events (E > 100 EeV)$ $E > 57 EeV$
2	³⁰ ³⁰ ³⁰ ³⁰ ³⁰ ³⁰ ³⁰ ³⁰
800 1000 Time (100 ns)	-60 -60 -60 -60 -60 -60 -60 -60 -60 -60

Progress from UHECR 2012

A conceptual design for a large ground array of **Fluorescence Detectors**

P. Privitera in UHECR 2012

Feb. 2012

EUSO-TA optics Single-pixel camera

Oct. 2016 Sep. 2017 Oct. 2018

The full-scale FAST telescope

Oct/2016 Dec/2016 Apr/2017 Jul/2017 Oct/2017 Dec/2017 Apr/2018 Jul/2018 Oct/2018

- E7694-01)
- 1 m² aperture of the UV band-pass filter
- FoV
- 425 hours observation by October 2018

Real-time night sky monitoring

Calibrations for FAST

Absolute calibration in laboratory

Detection efficiency

angle [degree]

Ē

Receiving the external triggers from TA FD

- Common field-of-view (FoV) with FAST and TA FD
 - - detect a vertical laser in a test operation

DAQ setup for the FAST telescopes

Azimuth angle [degree]

The highest event

Reconstructing the highest event

Work: Justin Albury, Jose Bellido

-165-170 £ -175 800 47700

ې 47600 <u>اا</u>

14

Possible application of the FAST prototypes

- uncertainties and a cross calibration.
- direction, 100 m in core location).

- Fluorescence detector Array of Single-pixel Telescopes (FAST)
- Optimization to detect UHECR with economical fluorescence detector array.
- 10×statistics compared to Auger and TA×4 with X_{max}
- UHECR astronomy for nearby universe, directional anisotropy on energy spectrum and mass composition
- Installed the 3 full-scale FAST telescopes at Telescope Array site
- Detect a distant vertical laser and UHECRs
- Ş Stable observation with remote controlling.
- We will continue to operate the telescopes and search for UHECR in coincidence with the TA detectors.
- Plan to install 1st telescope in the Pierre Auger Observatory in 2019
- Developing new electronics and preparing for stand-alone operation ĕ

http://www.fast-project.org

Summary and future plans

PMT 2

PMT 3 PMT 4

Laser -- PMT 1

UHECR

New collaborators are welcome! 16

Backup

Exposure and full sky coverage TA×4 + Auger **K-EUSO : pioneer detection from** space with an uniform exposure in northern/southern hemispheres

> 10 - 15 years Next generation observatories In space (100×exposure): POEMMA

- Physics goal and future perspectives Origin and nature of ultrahigh-energy cosmic rays (UHECRs) and particle interactions at the highest energies
 - 5 10 years
 - **Detector R&D** Radio, SiPM, Low-cost
 - fluorescence
 - detector

"Precision" measurements AugerPrime

Low energy enhancement (Auger infill+HEAT+AMIGA, TALE+TA-muon+NICHE) LHCf/RHICf for tuning models

with simplified FD.

Filter transmittance measurement at site

FoV(854 - 1045), Date: 20170119, Time: 04:02:59.140857145

Simulation study

Time bin [100 ns]

Time bin [100 ns]

with simplified FD.

Top-Down reconstruction with FAST

Top-Down Reconstruction -Using a χ^2 test to compare pulses bin-by-bin

$$\chi^{2} = \sum_{\text{pixel } i \text{ time } t} \sum_{i \text{ time } t} \frac{(x(i, t) - A\mu(i, t))^{2}}{\sigma_{\text{NSB}}^{2}(i) + A\sigma_{\text{signal}}^{2}(i, t)^{2}}$$

- A is a scale factor for shower energy
- Trace timing fitted as a free parameter in 100 ns steps (accounts for trigger timing fluctuations)

Signal uncertainty depends on μ :

$$\sigma_{\text{signal}}^2 = \sigma_{\text{ph}}^2 = \frac{\mu}{k} \left(1 + V_g\right)$$

Photon to Photo-electron

by Justin and Jose

	Simula
Azimuth	Core(2
-172.6 deg	8.1 km
	Azimuth -172.6 deg

Comparison betwen data and the best-fit result from top-down reconstruction

Preliminary

tion condition X) Core(Y) Xmax Energy -9.0 km 850 g/cm² 16.8 EeV

TAFD external trigger, 3~5 Hz

15 MHz low pass filter

Portable VME Electronics - Struck FADC 50 MHz sampling,

- SIS3350 for 4 channels
- Updated to SIS3316 for 16 channels
- GPS board, HYTEC GPS2092

FAST DAQ System

Camera of FAST×4

Anode & dynode Signal

High Voltage power supply, N1470 CAEN

> All modules are remotely controlled through wireless network.

777, Phillips scientific Signal×50

+10% energy scale difference in TA/Auger

Energy spectrum

Mass composition

TA collab. ApJ, 858, 76(2018)

Take away message

TA and Auger composition measurements (Xmax) agree within the systematics $18.2 < \log_{10}(E/eV) < 19.0$

> V. de Souza et al (Mass Composition WG), Proc. of ICRC 2017

M. Unger et al., ICRC 2017, J. Bellido et al., ICRC 2017 **28**

No GZK y and v at the highest energies

Ş

Ş

Top-down models are ruled out. Auger limits become sensitive to GZK-v and y

Large/intermediate scale anisotropies

Auger dipole: E > 8 EeV, 4.7% dipole with 5.2 σ

α (°)
) ± 60
) ± 10
°) a

- → TA Hotspot: E > 57 EeV, **3.4** or anisotropy [TA collab. ApJL, 790:L21 (2014)]
- TA (7 years, 109 events above 57 EeV) + Auger(10 years, 157 events) \blacklozenge above 57 EeV), 20° circle oversampling

• E > 57 EeV, no excess from the Virgo cluster

- Flux pattern correlation [Pierre Auger collab. ApJL, 853:L29 (2018)]
 - With a flux pattern of starburst galaxies, isotropy of UHECR is disfavored with 4.0σ confidence above 39 EeV

9.7% anisotropic fraction and 12.9° angular scale •

The other three flux patterns: 2.7σ – 3.2σ

Possible sites

U.S. Light Pollution Map

Possible sites Northern: USA Southern: Argentina

31

Telescope Array fluorescnece detector

- Maintenance-free detector
- Automated operation in the night, fail safe to protect detector
- Powered by solar panel and batteries and DAQ via wireless-LAN

Challenges for fluorescence detectors

UHECR events

Comparison with TA FD result

Mass composition (width of Xmax distribution)

N = 132 events

TA and Auger composition measurements (Xmax) agree within the systematics

Time (100 ns)

First detection of UHECR using fluorescence technique

- Ş
 - Fresnel lens + 55 PMTs

In 1958, Suga and Oda suggested Fluorescence technique at Norikura Symposium.

37