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Cosmic ray studies with Extensive Air Shower technique

CR composition – inferred from air shower properties

e.g., shower maximum position Xmax

or muon density ρµ at ground

problem: consistency between different measurements?!



Cosmic ray studies with Extensive Air Shower technique

CR composition studies – most dependent on interaction models

e.g. predictions for Xmax: on the properties of the primary
particle interaction (σinel

p−air, forward particle spectra)

⇒ most relevant to LHC studies of pp collisions

predictions for muon density: on secondary particle
interactions (cascade multiplication); mostly on Nch

π−air
⇒ small potential influence of ‘new physics’



CR interaction models, LHC data, and EAS predictions

List of models available in the CORSIKA EAS simulation code
(from T. Pierog, ISVHECRI-2018)



CR interaction models, LHC data, and EAS predictions

All the models: updated with data from LHC Run 1

(notably on σtot/el
pp by TOTEM & ATLAS ALFA)

[T. Pierog, ISVHECRI-2018]

⇒ very similar high energy extrapolations for σinel
pp & σinel

p−air

⇒ strong constraint on Xmax predictions
(< 10% difference in σinel

p−air ⇒ . 10 g/cm2 shift in Xmax)



CR interaction models, LHC data, and EAS predictions

Yet large (up to 40 g/cm2) differences for Xmax predictions

[T. Pierog, ISVHECRI-2018]

largest differences between SIBYLL & QGSJET-II
(to be addressed below)



Same qualitative picture for all the models

QCD-inspired: interaction mediated by parton cascades

multiple scattering
(many cascades in parallel)

real cascades
⇒ particle production

virtual cascades
⇒ elastic rescattering
(just momentum transfer)

Universal interaction mechanism ⇒ predictive power

different hadrons (nuclei) ⇒ different initial conditions
(parton Fock states) but same mechanism

energy-evolution of the observables (e.g. σtot
pp):

due to a larger phase space for cascades to develop



Hadronic interactions: input from pQCD & problems

pQCD: collinear factorization applies for inclusive spectra
d3σpp→h

dp3 = ∑i,j,k fi/p⊗σij→k⊗ fj/p⊗Dh/k

pQCD predicts evolution of
PDFs (fi/p) & FFs (Dh/k)

⇒ allows to treat high pt

hadron production
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Hadronic interactions: input from pQCD & problems

pQCD: collinear factorization applies for inclusive spectra
d3σpp→h

dp3 = ∑i,j,k fi/p⊗σij→k⊗ fj/p⊗Dh/k

pQCD predicts evolution of
PDFs (fi/p) & FFs (Dh/k)

⇒ allows to treat high pt

hadron production
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What is beyond and why the models are so different?

nonperturbative (low pt) parton evolution
(’soft’ rescatterings; very initial stage of ’semihard’ cascades)

multiple scattering aspect

nonlinear effects (interactions between parton cascades)

constituent parton Fock states & hadron ’remnants’



Nonperturbative parton Fock states: 2 approaches

1. (Implicitely) always the same nonperturbative Fock state
(typical for models used at colliders, also SIBYLL & DPMJET)

multiple parton cascades originate
from the same initial parton state

multiple scattering has small
impact on forward spectra

new branches emerge at small x
(G(x,q2) ∝ 1/x)

⇒ Feynman scaling for forward
particle production

higher
√

s ⇒ more abundant
central particle production

forward & central production –
decoupled from each other

(descreasing number of cascade
branches for increasing x)



Nonperturbative parton Fock states: 2 approaches

2. p = ∑ of multi-parton Fock states [EPOS & QGSJET(-II)]

many cascades develop in parallel
(already at nonperturbative stage)

higher
√

s ⇒ larger Fock states
come into play: |qqq〉 → |qqq̄qq〉
→ ... |qqq̄qq...q̄q〉

⇒ softer forward spectra
(energy sharing between
constituent partons)

forward & central particle
production - strongly correlated

e.g. more activity in central
detectors ⇒ larger Fock states
⇒ softer forward spectra



Why of importance for air shower predictions?

Main cause: energy-dependence of the nucleon ’inelasticity’
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smaller K inel ⇒ stronger
’leading particle’ effect

⇒ slower shower
development
(deeper Xmax)
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SIBYLL: K inel
pp - weak

energy dependence

for increasing
√

s,
mostly central
production enhanced

smaller K inel ⇒ stronger
’leading particle’ effect

⇒ slower shower
development
(deeper Xmax)

Strong energy-rise of K inel
pp in EPOS & QGSJET-II

due to energy sharing between larger numbers of constituent
partons at higher energies

⇒ less energy left for proton ’remnants’

⇒ quicker EAS development (smaller Xmax)



’Smoking gun’ test: signal correlations in CMS & TOTEM
[SO, Bleicher, Pierog & Werner, PRD94 (2016) 114026]

Cross-correlation of dNch
pp/d|η| at η = 0 (pt > 0.1 GeV) and η = 6
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(apart from the tails of the multiplicity distributions)

twice weaker correlation for SIBYLL-2.3
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Cross-correlation of dNch
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(apart from the tails of the multiplicity distributions)

twice weaker correlation for SIBYLL-2.3Similar studies possible with LHCf & ATLAS detectors



Other model uncertainties largely due to π-air interactions
[SO & Bleicher, PRD93 (2016) 051501]

E.g., compare Xmax of EPOS-LHC & QGSJET-II-04

and make a “cocktail”: QGSJET-II for the 1st interaction &
EPOS-LHC for the rest of the cascade
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Other model uncertainties largely due to π-air interactions
[SO & Bleicher, PRD93 (2016) 051501]

E.g., compare Xmax of EPOS-LHC & QGSJET-II-04

and make a “cocktail”: QGSJET-II for the 1st interaction &
EPOS-LHC for the rest of the cascade

large part of EPOS &
QGSJET-II Xmax-difference:
due to π-air collisions
(difference between red &
green lines)

caused by a copious p̄p- &
n̄n-pair production and
higher pion diffraction rate
in EPOS-LHC

700

750

800

10
17

10
18

10
19

 E 0  (eV)

 X
m

a
x 
(g

/c
m

2
) 

 p-induced EAS

 EPOS-LHC

 QGSJET-II-04 

 QGSJET-II-04 for p-air, EPOS - rest



How to solve the UHECR composition puzzle?

Present data on UHECR composition: no coherent interpretation

because of deficiences of current CR interaction models?

or the problem is with the data themselves?

⇒ let us start with one benchmark observable



How to solve the UHECR composition puzzle?

Present data on UHECR composition: no coherent interpretation

because of deficiences of current CR interaction models?

or the problem is with the data themselves?

⇒ let us start with one benchmark observable

〈Xmax〉 – good candidate: PAO & TA – consistent with each other

[W. Hanlon, ISVHECRI-2018]



How to solve the UHECR composition puzzle?

But: which model to use to interprete the data?
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or all the models are
deficient?

PAO data on maximal muon production depth Xµ
max may help

models predict deeper Xµ
max

than observed

e.g. one needs primary
iron for QGSJET-II-04

or primary gold for
EPOS-LHC...

[R. Prado, ISVHECRI-2018]



How to solve the UHECR composition puzzle?

Change models to ’marry’ Xmax & Xµ
max data composition-wise?

[R. Prado, ISVHECRI-2018]

the two sets of data should overlap in terms of 〈lnA〉
for 1≤ A≤ 56!



How to solve the UHECR composition puzzle?

Change models to ’marry’ Xmax & Xµ
max data composition-wise?

[R. Prado, ISVHECRI-2018]

the two sets of data should overlap in terms of 〈lnA〉
for 1≤ A≤ 56!

Acient Greek wisdom may help...

change a model to
modify Xmax prediction:

Xµ
max will move in

the same direction!

or vice versa



Modifying CR interaction models: which way to go?

start with QGSJET-II and change the treatment of p−air:

σinel
p−air – little freedom in view of LHC data

treatment of diffractive collisions: < 10 g/cm2 effect on Xmax

[SO, PRD89 (2014) 074009]

treatment of forward hadron production (⇒ impact on K inel
p−air)

– some freedom left (see the SIBYLL/QGSJET-II difference)
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Modifying CR interaction models: which way to go?

start with QGSJET-II and change the treatment of p−air:

this impacts only the initial stage of EAS development

⇒ parallel up/down shift of the cascade profile (same shape)

⇒ (nearly) same effect on Xmax and Xµ
max

SIBYLL-2.3 for p−air (⇒ smaller K inel
p−air); QGSJET-II for the rest
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⇒ larger 〈lnA〉 from Xmax but 〈A〉 > 56, based on Xµ
max?!



Modifying CR interaction models: which way to go?

Changing the treatment of π−air collisions (’Achilles & Tortoise’)

e.g., σinel
π−air, σdiffr
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≡ making special assumptions
concerning the pion structure
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Modifying CR interaction models: which way to go?

Changing the treatment of π−air collisions (’Achilles & Tortoise’)

e.g., σinel
π−air, σdiffr

π−air, K inel
π−air

≡ making special assumptions
concerning the pion structure

affects every step in the
multi-step hadron cascade

⇒ cumulative effect on Xµ
max

but: only the first few steps in
the cascade impact Xmax

after few steps, most of energy
channelled into e/m cascades

⇒ much weaker effect on Xmax



Modifying CR interaction models: which way to go?

E.g., employing the old QGSJET model for π−air collisions

⇒ higher σinel
π−air, larger Nch

π−air & K inel
π−air
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E.g., employing the old QGSJET model for π−air collisions
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π−air, larger Nch
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⇒ (almost) pure proton composition for UHECRs

NB: rather an indication of the tendency, not a solution

old QGSJET – outdated; known to overestimate particle
production in π−air collisions



Summary on Xmax & Xµ
max

Current situation

data on Xmax favor a light primary composition

data on Xµ
max: close to model results for primary iron (at best)
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of the cascade profile
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Xmax and Xµ
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Xmax & Xµ

max data
composition-wise
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Current situation

data on Xmax favor a light primary composition

data on Xµ
max: close to model results for primary iron (at best)

Changing the treatment of π−air interactions?

strong effect on Xµ
max

but minor shift of Xmax

⇒ self-consistent
interpretation of the
data on Xmax & Xµ

max



Summary on Xmax & Xµ
max

Current situation

data on Xmax favor a light primary composition

data on Xµ
max: close to model results for primary iron (at best)

Changing the treatment of π−air interactions?

strong effect on Xµ
max

but minor shift of Xmax

⇒ self-consistent
interpretation of the
data on Xmax & Xµ

max

but: very light primary
composition?!



Can model changes resolve the conflict with RMS(Xmax)?

Model predictions for RMS(Xmax): no freedom for primary protons

RMS(Xmax): dominated by σinel
p−air

(mean free pass)

now fixed by LHC data

impact of diffraction: few g/cm2

[SO, PRD89 (2014) 074009]

fluctuations of K inel
p−air: (Glauber)

geometry of p-air collisions
(N of ’wounded’ nucleons)
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⇒ similar results for all the models



Can model changes resolve the conflict with RMS(Xmax)?

Model predictions for RMS(Xmax): no freedom for primary nuclei

σinel
A−air of weak impact

(short mean free pass)

universal (Glauber) collision
geometry (fluctuations of the
number of ’wounded’ nucleons)

but: sensitive to fragmentation
of nuclear spectator part
[Kalmykov & SO, Sov.J.Nucl.Phys. 50

(1989) 315; Phys.At.Nucl. 56 (1993) 346]
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Model predictions for RMS(Xmax): no freedom for primary nuclei

σinel
A−air of weak impact

(short mean free pass)

universal (Glauber) collision
geometry (fluctuations of the
number of ’wounded’ nucleons)

but: sensitive to fragmentation
of nuclear spectator part
[Kalmykov & SO, Sov.J.Nucl.Phys. 50

(1989) 315; Phys.At.Nucl. 56 (1993) 346]
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experimental fact:
relative fragment yields scale above few GeV/nucleon

⇒ calibration at low energies warranties HE predictions

⇒ no further freedom for RMS(Xmax)
(c.f. SIBYLL & QGSJET-II results)



Why smaller RMS(Xmax) of EPOS-LHC? [SO, arXiv:1612.09461]

Cross check with SIBYLL & QGSJET-II: two extreme scenarios

1 complete break up of
nuclear spectator part
(into separate nucleons)
⇒ smallest RMS(Xmax)

2 no break up (single
secondary fragment)
⇒ largest RMS(Xmax)
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nuclear spectator part
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2 no break up (single
secondary fragment)
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the full break up option
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Why smaller RMS(Xmax) of EPOS-LHC? [SO, arXiv:1612.09461]

Cross check with SIBYLL & QGSJET-II: two extreme scenarios

1 complete break up of
nuclear spectator part
(into separate nucleons)
⇒ smallest RMS(Xmax)

2 no break up (single
secondary fragment)
⇒ largest RMS(Xmax)

EPOS results: close to
the full break up option
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Likely reason: incorrect matching between the interaction and
nuclear fragmentation procedures in EPOS
(double count of knock-out nucleons)



Muon excess in air showers [more details in extra slides]

indications on 20−70% muon deficit in EAS simulations

[R. Prado, ISVHECRI-2018]



Muon excess in air showers [more details in extra slides]

Can be explained by a change of the primary interaction?

large Nµ-enhancement ⇔ order of magnitude rise of Nch

(proton should look like a gold nucleus)

⇒ requires new physics
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Muon excess in air showers [more details in extra slides]

Can be explained by a change of the primary interaction?

large Nµ-enhancement ⇔ order of magnitude rise of Nch

(proton should look like a gold nucleus)

⇒ requires new physics

but: with a huge (barn level) cross section

can be discriminated experimentally: will cause factor of 10
enhancement of muon density fluctuations at ground



Muon excess in air showers [more details in extra slides]

Conventional physics: change of pion-air interactions?

Nµ results from a multi-step hadron cascade

simple Geitler model: Nµ(E0) ≃ Nµ(Eref) (E0/Eref)
αµ

assume a new model which predicts a faster energy rise:
αµ → α̃µ (higher Nch in π-air, smaller charge exchange, etc.)



Muon excess in air showers [more details in extra slides]

Conventional physics: change of pion-air interactions?

Nµ results from a multi-step hadron cascade

simple Geitler model: Nµ(E0) ≃ Nµ(Eref) (E0/Eref)
αµ

assume a new model which predicts a faster energy rise:
αµ → α̃µ (higher Nch in π-air, smaller charge exchange, etc.)

⇒ a substantial Nµ-enhancement at lower energies too

e.g., for Eref = 1015 eV, Rµ enhancement at E0 = 1019 eV
corresponds to

√

Rµ enhancement at 1017 eV



Muon excess in air showers [more details in extra slides]

Other options: change of LDF shape at large distances?

current measurements of muon
excess: mostly at large distances

muon LDF at large Rcore: sensitive
to pt-tails of low energy (∼ 100
GeV) interactions at large heights

⇒ cross check of low energy
models/use of alternative models

e.g., EPOS-LHC performs well
compared to NA61 data

0.8

1

1.2

1.4

1.6

1.8

2

100 1000 10000

ρ
Q

F/
Q

G
/ρ

Q
U

distance [m]

G-FLUKA
UrQMD

GHEISHA
 UrQMD

e
±

µ±

γ

[Drescher et al., Asropart.Phys.

21 (2004) 87]



Muon excess in air showers [more details in extra slides]

Other options: change of LDF shape at large distances?

current measurements of muon
excess: mostly at large distances

muon LDF at large Rcore: sensitive
to pt-tails of low energy (∼ 100
GeV) interactions at large heights

⇒ cross check of low energy
models/use of alternative models

e.g., EPOS-LHC performs well
compared to NA61 data
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another question: validity of the EGS4 treatment at large
Rcore, e.g., of the treatment of Landau scattering?



Summary

1 LHC studies of pp collisions constrained interaction models

most important for CR physics: σtot/el
pp by TOTEM & ATLAS

yet important differences between model predictions

2 Differences for predicted K inel
p−air (⇒ Xmax):

model assumptions for constituent parton Fock states

discrimination: correlations of forward & central production

3 Other uncertainties: mostly related to π-air interactions

4 Coherent interpretation of present data on Xmax & Xµ
max

⇒ very light composition of UHECRs

5 But: no freedom in the models to ’marry’ a small RMS(Xmax)
to a light UHECR composition

6 Muon excess in air showers remains a puzzle

potential solutions with HE interactions – not too appealing

another possibility: change of muon LDF shape at large Rcore



Extra slides



Changing the treatment of both p−air & π−air collisions
in opposite directions?

E.g., using SIBYLL-2.3 for p−air and QGSJET for π−air
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still a very light UHECR composition

LHC data don’t allow big changes for p−air

NB: unnatural option – changes in models typically affect
interactions of protons & pions similarly (e.g., rise of Nch)



Muon excess in air showers: potential options

NB: Nµ results from a
multi-step hadron cascade

. 1 cascade step per
energy decade

which π−air interactions
most important?

Nµ ∝ E
αµ

0 = ∏int(lgE0)
i=1 10αµ

each order of magnitude:
factor 10αµ ≃ 8 (αµ ≃ 0.9)

⇒ higher Nµ requires to
change π−air interactions
over a wide energy range
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Producing muon excess by a change of the primary interaction?

if we double Nch for the 1st interaction?

< 10% increase for Nµ! [SO, Czech.J.Phys. 56 (2006) A149]

to get, say, a factor 2 enhancement:
Nch should rise by an order of magnitude



Muon excess in air showers: potential options

Producing muon excess by new physics?

proton-air cross section at ultrahigh energies: σinel
p−air ∼ 1/2 b

to be detected by air shower techniques:
new physics should impact the bulk of interactions

⇒ to emerge with barn-level cross section

presently at LHC: nothing at fb level (10−15 b)



Muon excess in air showers: potential options

NB: signals of new physics may be discriminated by PAO

p-air: interaction profile & distribution of the impact parameter b:

⇒ interactions dominated by peripheral (large b) collisions

at large b: low parton density

⇒ not suitable for new physics to emerge
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NB: signals of new physics may be discriminated by PAO

p-air: interaction profile & distribution of the impact parameter b:

⇒ interactions dominated by peripheral (large b) collisions

at large b: low parton density

⇒ not suitable for new physics to emerge

Assume new physics to emerge in 10% of most central collisions

and result in EAS with a factor of 10 higher muon density...

⇒ 90% muon excess (〈ρµ〉 = 0.1∗10ρ(0)
µ +0.9∗ρ(0)

µ = 1.9ρ(0)
µ )

⇒ large fluctuations of muon density: σρµ/ρµ ≃ 100%

⇒ can be easily discriminated in PAO data
(for usual EAS: σρµ/ρµ ≃ 10÷15%)


