Transition from Galactic to Extragalactic Cosmic Rays

. Michael Kachelrieß

NTNU, Trondheim

Outline of the talk

Introduction

Observations and their interpretation:

- CR composition > 10¹⁷ eV
- Galactic CRs above the knee
- EGRB and cascade limit
- Neutrino data

Models:

- Dip model
- Mixed models
- Minimal mixed model

Conclusions

3

Introduction

- We can model UHECRs, using photons and neutrinos merely as constraints, e.g.
 - thin UHECR sources, e.g. lobes of radio galaxies
 - IceCube Neutrinos: hidden sources
 - EGRB: starburst galaxies and blazars
- Aproach: model as much as possible with single source class

Constraints on a minimal model:

a single source class that

• fits the extragalactic UHECR flux and composition

3 🕨 🖌 3

Constraints on a minimal model:

a single source class that

- fits the extragalactic UHECR flux and composition
- consistent with early Galactic to extragalactic transition
- \Rightarrow ankle has to be a feature of source spectrum

Constraints on a minimal model:

a single source class that

- fits the extragalactic UHECR flux and composition
- consistent with early Galactic to extragalactic transition
- \Rightarrow ankle has to be a feature of source spectrum
 - fits the (extragalactic) neutrino flux
 - gives subdominant contribution to EGRB

[KASCADE-Grande '13]

[KASCADE-Grande '13]

Rigidity dependent knee:

light knee agrees with knee in all-particle spectrum at $4 imes 10^{15}\,{
m eV}$

3

イロト イヨト イヨト イヨト

[KASCADE-Grande '13]

Rigidity dependent knee:

- light knee agrees with knee in all-particle spectrum at $4 imes 10^{15}\,{
 m eV}$
- light component recovers

3

イロト イヨト イヨト イヨト

[PAO '14]

Michael Kachelrieß (NTNU Trondheim)

Transition

UHECR, 9. October '18 6 / 25

CR composition $> 10^{17} \,\mathrm{eV}$

[PAO '14]

- < A

[PAO '14]

early transition from Galactic to extragalactic CRs

Transition to extragalactic CRs - anisotropy limits

dipole

quadrupole

Transition to extragalactic CRs - anisotropy limits

dipole

quadrupole

dominant light Galactic composition around $E = 10^{18} \text{ eV}$ excluded

Transition to extragalactic CRs – observed dipole [PAO '17, '18] • E > 8 EeV: dipole observed with $A \simeq 6.5\%$ and R.A. $\simeq 120^{\circ}$

Transition to extragalactic CRs – observed dipole [PAO '17, '18]

• $E>8\,{\rm EeV}$: dipole observed with $A\simeq 6.5\%$ and ${\rm R.A.}\simeq 120^\circ$

direction consistent with extragalactic mass distribution

3

(日) (同) (三) (三)

Galactic CRs above the knee

• to test quantitatively extragalactic models, we need to model also Galactic fluxes

$$I_A(E) = I_A^{\text{Gal}}(E) + I_A^{\text{ex}}(E)$$

Michael Kachelrieß (NTNU Trondheim)

Galactic CRs above the knee

• to test quantitatively extragalactic models, we need to model also Galactic fluxes

$$I_A(E) = I_A^{\text{Gal}}(E) + I_A^{\text{ex}}(E)$$

- how certain are observations/models for Galactic fluxes?
- e.g. position of light knee?

E 6 4 E

Uncertainties: CR composition

Kascade-Grande: dependence on interaction model

Uncertainties: CR composition

Kascade-Grande: dependence on interaction model

Uncertainties: CR composition ARGO-YBJ: position of "p+He knee" $\simeq 700 \text{ TeV}$

Uncertainties: CR composition

• iron knee at $\simeq 20 \, \text{PeV}$?

IceCube events: Large soft component?

< 67 ▶

IceCube events: power-law fit of energy spectrum

The photon horizon

Development of the elmag. cascade:

< 行

Development of the elmag. cascade:

$\Rightarrow\,$ photons shifted below $m_e^2/\varepsilon_{\rm bb}\simeq 250\,{\rm GeV}$

Cascade limit: $\alpha = 2.1$

Cascade limit: $\alpha = 2.3$

Cascade limit: $\alpha = 2.5$

Cascade limit:

Multi-messenger picture

< 17 ▶

< ∃ >

The dip model

[Berezinsky, Gazizov, Grigorieva '03]

3

< 🗇 🕨

- 4 ∃ →

Models

Dip model

The dip model

[Berezinsky, Gazizov, Grigorieva '03]

- good fit w. 1 parameter
- \bullet transition below $E\sim 10^{18}~{\rm eV}$
- requires $\leq 15\%$ of He

⊏, ev

э

イロト イポト イヨト イヨト

Models Dip model

The dip model

 $\bullet~{\rm requires} \lesssim 15\%~{\rm of}~{\rm He}$

L, UV

3

・ロト ・回ト ・ヨト ・ヨ

- Peter's cycle: $E_{\max,A} = ZE_{\max,p}$
- $p\gamma$ interactions filter nuclei A close to threshold

3

(日) (同) (三) (三)

- Peter's cycle: $E_{\max,A} = ZE_{\max,p}$
- $p\gamma$ interactions filter nuclei A close to threshold
- secondary neutrons lead to soft proton flux

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- Peter's cycle: $E_{\max,A} = ZE_{\max,p}$
- $p\gamma$ interactions filter nuclei A close to threshold
- secondary neutrons lead to soft proton flux
- ankle:
 - = transition: requires $E^p_{\rm max} \simeq 60 \, {\rm PeV}$
 - = feature of extragalactic spectrum

A B A A B A

< 🗗 🕨

- Peter's cycle: $E_{\max,A} = ZE_{\max,p}$
- $p\gamma$ interactions filter nuclei A close to threshold
- secondary neutrons lead to soft proton flux
- ankle:
 - = transition: requires $E_{\rm max}^p \simeq 60 \, {\rm PeV}$
 - = feature of extragalactic spectrum
- neutrino flux from $p\gamma$ suppressed, at too high E

A B A A B A

[Globus et al. '15, '17]

• spectrum:

[Globus et al. '15, '17]

light component:

[Globus et al. '15, '17]

-

< 一型

[Globus et al. '15, '17]

э

→ ∃ →

< 17 ▶

[Globus et al. '15, '17]

(a)

[Globus et al. '15, '17]

• neutrinos:

[Unger, Farrar, Anchordoqui '15]

Michael Kachelrieß (NTNU Trondheim)

UHECR, 9. October '18 21 / 25

Phenomenological AGN model

[Unger, Farrar, Anchordoqui '15]

Michael Kachelrieß (NTNU Trondheim)

UHECR, 9. October '18 21 / 25

< 一型

Phenomenological AGN model

[Unger, Farrar, Anchordoqui '15]

Minimal model: add neutrinos

3 zones

- core: rigidity dependent acceleration $dN/dR \propto R^{-\alpha} \exp(-R/R_{\rm max})$
- inner zone: $A\gamma$ interactions
- outer zone: Ap interactions
- diffusion: increase of effective au_{int}
- source evolution
 - BL Lac \simeq peaked at late times
 - AGN \simeq peaked at early times

4 3 5 4 3 5

Minimal model: add neutrinos

3 zones

- core: rigidity dependent acceleration $dN/dR \propto R^{-\alpha} \exp(-R/R_{\rm max})$
- inner zone: $A\gamma$ interactions
- outer zone: Ap interactions
- diffusion: increase of effective τ_{int}
- source evolution
 - BL Lac \simeq peaked at late times
 - AGN \simeq peaked at early times

4 1 1 4 1 1 1

Minimal model: add neutrinos

3 zones

- ▶ core: rigidity dependent acceleration $dN/dR \propto R^{-\alpha} \exp(-R/R_{\max})$
- inner zone: $A\gamma$ interactions
- outer zone: Ap interactions
- diffusion: increase of effective $\tau_{\rm int}$
- source evolution
 - BL Lac \simeq peaked at late times
 - AGN \simeq peaked at early times

4 3 5 4 3 5

Late evol., only interactions on gas: $\alpha = 1.8$, $\tau_0^{pp} = 0.035$ at $E_0 = 10^{19} \text{ eV}$

Late evol., only interactions on gas: $\alpha = 1.8$, $\tau_0^{pp} = 0.035$ at $E_0 = 10^{19} \text{ eV}$

Late evol., only interactions on gas: $\alpha = 1.8$, $\tau_0^{pp} = 0.035$ at $E_0 = 10^{19} \text{ eV}$

AGN evol., gas and photons: $\alpha = 1.5$, $\tau_0^{pp} = 0.035$ and $\tau_0^{p\gamma} = 0.29$

Michael Kachelrieß (NTNU Trondheim)

UHECR, 9. October '18 24 / 25

AGN evol., gas and photons: $\alpha = 1.5$, $\tau_0^{pp} = 0.035$ and $\tau_0^{p\gamma} = 0.29$

Michael Kachelrieß (NTNU Trondheim)

AGN evol., gas and photons: $\alpha = 1.5$, $\tau_0^{pp} = 0.035$ and $\tau_0^{p\gamma} = 0.29$

Michael Kachelrieß (NTNU Trondheim)

UHECR, 9. October '18 24 / 25

Summary

common source class for UHECRs and neutrinos?

- several candidates as GRBs are already disfavoured
- (subclasses of) AGNs remain attractive option
- ► large neutrino flux at "low" energies requires Ap interactions
- UHECR composition requiress nuclei with $A\gamma$
- sources with both Ap and $A\gamma$ interactions favoured
- eGRB constrains stronly neutrino sources:
 - slope of extragal. neutrino $\alpha \lesssim 2.3$
 - neutrino sources are not main source class of EGRB
- neutrino signal in IceCube:
 - additional Galactic contribution dominating at low energies (?)

(日) (周) (三) (三)