

Heavy flavour physics at LHCb

- Why Flavour Physics
- * The LHCb experiment
- * Digression : Lepton Flavour Universality
- * Highlight on selected LHCb results
 - \rightarrow the current flavour anomalies

Flavour physics in the Standard Model

26 free parameters :

- → 3 coupling constants
- → 2 Higgs field parameters
- → 12 fermions masses
- → 4 quark *mixing* parameters
- → 4 neutrino mixing parameters
- → 1 QCD CP violating phase (?)
- 20 are concerning flavour physics

Flavour physics is at the heart of the Standard Model

Why are there so many different fermions ?

What is responsible for their organisation into generations / families ?

Why are there 3 generations / families each of quarks and leptons ?

Why are there flavour symmetries ?

What breaks the flavour symmetries ?

What causes matter–antimatter asymmetry ?

Flavour changing interactions :

- → electroweak processes
- → at the quark level

Flavour changing interactions :

- → electroweak processes
- → at the quark level

But quarks feel the strong interaction and hadronise

- → quark level parameters can not be accessed directly
- → hadronic physics effects need to be under control

Flavour changing interactions :

- → electroweak processes
- → at the quark level

But quarks feel the strong interaction and hadronise

- → quark level parameters can not be accessed directly
- → hadronic physics effects need to be under control

Heavy quarks ?

- $\rightarrow \Lambda_{\rm QCD} / m_{\rm q} << 1 \& \alpha_{\rm s}(m_{\rm q}) << 1$
- → hadronic physics can be handled perturbatively

m ≈ 100 MeV

Flavour changing interactions :

- → electroweak processes
- → at the quark level

But quarks feel the strong interaction and hadronise

- → quark level parameters can not be accessed directly
- → hadronic physics effects need to be under control

Heavy quarks ?

- $\rightarrow \Lambda_{\text{QCD}} / \text{m}_{\text{q}} << 1 \& \alpha_{\text{s}}(\text{m}_{\text{q}}) << 1$
- → hadronic physics can be handled perturbatively

Heavy flavor physics :

- → study b- (and c-) hadrons decays
- very rich phenomenology

Main objectives :

- → Test the SM / Search for physics beyond the SM (BSM)
- → compare precise theoretical prediction with precise experimental measurements

Search for physics beyond the Standard Model (BSM)

High energy

Direct observation :

- → produce "new" particles on shell and detect decay products
- → more intuitive, "really" produced
- → limited by collision energy

High precision

Indirect observation :

- → virtual "new" particles can be discovered in loop processes
- → less intuitive, "quantum" level
- → not limited by collision energy, limited by precision (of measurements and theoretical predictions)

Complementary approaches \rightarrow both are needed !

BSM searches with heavy flavour

Contribution to New Physics as a correction to the Standard Model Standard Model

BSM searches with heavy flavour

Contribution to New Physics as a correction to the Standard Model Standard Model New Physics a q New **Physics** u, c, t h New u, c, t **Physics** $\mathcal{A}_{BSM} = \mathcal{A}_0 \left(\frac{c_{SM}}{m_W^2} + \frac{c_{NP}}{\Lambda^2} \right)$

▶ What is the scale of New Physics \land ? What are its coupling C_{NP} ?

The LHCb experiment

 The LHCb detector and its upgrades

LHCb @ LHC

One of the 4 main LHC experiments

Designed for heavy flavour physics precision measurements

The LHCb collaboration

934 members 65 institutes 17 countries

Beauty and Charm production at the LHC

LHC is a Flavor Factory, e.g. @ 7 TeV :

- $\sigma(pp \rightarrow cc X) = \sim 6 mb$ [LHCb-CONF-2010-013]
- $\sigma(pp \rightarrow b\overline{b} X) = \sim 0.3 \text{ mb}$ [PLB 694 (2010) 209]
 - \rightarrow note : the cross section grows lineraly with the energy
- B factories : $\sigma(e^+e^- \rightarrow b\overline{b})@Y(4S) = ~1 nb$

Challenging background condition :

• $\sigma(pp \rightarrow X)_{inel} = 60 \text{ mb}$ [JINST 7 (2012) P01010]

All B hadron species are produced : B^0 , B_s , B_c , ...

bb/cc pairs are produced predominantly in the forward or backward directions

A forward spectrometer (1/2)

A forward spectrometer (2/2)

With unique rapidity coverage at LHC \rightarrow complementary measurements

- LHCb
- → LHCb acceptance : $2 < \eta < 5$
- → fully covered by tracking and particle identification

A forward spectrometer optimised for heavy flavors

Key requirements

- → B and D decay identification and resolve fast B_s oscillation
- → Final state reconstruction and background rejection
- → collect high statistic

Detector design :

- → High precision vertexing and tracking
- VELO, TRACKING system
- → Particle identification
- RICH, CALO + MUON system
- → Trigger
- L0 (hardware) + HLT (software)

LHCb detector

The VErtex LOcator (VELO) (0/3)

The VErtex LOcator (VELO) (1/3)

Reconstruction of primary and decay vertices, track seeds

21 modules of R-Φ sensors

Movable device (retracted for safety during beam injection) :

- 35 mm from beam out of physics
- 8 mm from beam during physics
- Operated in vacuum

OPEN

CLOSE

The VErtex LOcator (VELO) (2/3)

The VErtex LOcator (VELO) (3/3)

Reconstructed beam-gaz vertices (used for luminosity measurement)

The Tracking System (0/2)

The Tracking System (1/2)

System :

- 1 tracking station before magnet (TT) :
 → 4 layers of Si-Strips sensors
- Magnet
 - → $\int BdI = ~4 \text{ Tm}$; polarity switched regularly
- 3 tracking stations after magnet,
 4 layers each split into:
 - → Inner Tracker (Si-sensors)
 - → Outer Tracker (straw tube)

T1

Track finding :

- Long tracks : high-momentum tracks traversing the full LHCb tracking setup
 - → combine track seeds in VELO and T-stations and add TT hits
 - → measured with highest precision
 - → most numerous in the main LHCb acceptance

TT

The Tracking System (2/2)

Momentum resolution : $\sigma(p)/p = 0.4-0.6\%$ (5-100 GeV/c)

Momentum scale and detector alignment well controlled :

B hadron mass world's best measurements (2010 data only, 37pb⁻¹)

Quantity	LHCb	Best previous	PDG fit	[PLE
	measurement	measurement		
$M(B^+)$	5279.38 ± 0.35	5279.10 ± 0.55	5279.17 ± 0.29	7
$M(B^0)$	5279.58 ± 0.32	5279.63 ± 0.62	5279.50 ± 0.30	80
$M(B_s^0)$	5366.90 ± 0.36	5366.01 ± 0.80	5366.3 ± 0.6	(20
$M(\Lambda_b^0)$	5619.19 ± 0.76	5619.7 ± 1.7	_	012
$M(B^0) - M(B^+)$	0.20 ± 0.20	0.33 ± 0.06	0.33 ± 0.06	 N
$M(B_s^0) - M(B^+)$	87.52 ± 0.32	—	_	41]
$M(\Lambda_b^0) - M(B^+)$	339.81 ± 0.72	—	_	

B_{c}^{+} mass also measured

[ATLAS CONF-2011-050] ~ 22 MeV/c²

The RICH detectors (Particle Identification) (0/3)

The RICH detectors (PID) (1/3)

Cerenkov effect :

→ Cerenfov effect : when a particle travels faster than light in a medium,

it emits photons

→ the photons are emitted in a cone with a opening angle proportional to the speed of the particle

LHCb's RICHs : Cerenkov imaging detector

→ allow to identify charged hadrons

The RICH detectors (PID) (2/3)

 K/π separation over the full 1-100 GeV/c range

The detectors :

- RICH1 :
 - → full angular acceptance
 - → covers low momentum range : 1-60 GeV/c
 - → aerogel & C_4F_{10} radiators
- RICH2 :
 - → limited angular acceptance (~ \pm 15 → ~ \pm 100 mrad)
 - → high momentum range : ~15 GeV/c > 100 GeV/c
 - → CF₄ radiator
- Hybrid Photon Detectors (HPDs)
 - → 500 each with 1024 pixels
 - → High efficiency, low noise

Performances

- $\epsilon \approx 95$ % for 5% π -K misID probability
- performances well described by simulation

The RICH detectors (PID) (3/3)

The Calorimeters (Particle Identification) (0/2)

The Calorimeters (Particle Identification) (1/2)

Scintillator Pad Detector / PreShower :

- → robust e/ γ and e/hadron separation
- \rightarrow single layer scintillator tiles separated by Pb sheet (2.5 X₀)
- → $\epsilon(e^{\pm}) = 90\%$ for 5% e-hadron MisID

Electromagnetic CALorimeter :

- → e and γ energy measurement
- → trigger on electromagnetic decay channels
- → Pb plates / scintillator tiles (25 X_0)
- → $\sigma(E)/E = 10\%/\sqrt{E(GeV)} + 1\%$ (nominal)

Hadronic CALorimeter :

- → energy measurement for hadron
- → trigger on hadronic decay channels
- → Fe plates / scintillator tiles
- → $\sigma(E)/E = 69\%/\sqrt{E(GeV)} + 9\%$ (nominal), moderate but enough for triggering

The ECAL detector

The Calorimeters (Particle Identification) (2/2)

The Muon system (Particle Identification) (0/1)

The Muon system (Particle Identification) (1/1)

5 stations interleaved with iron absorbers

- muon identification
- → trigger on muonic decay channels
- → Muon ID ε(μ) = 97 %
 for 1-3% π-μ MisID

Data acquisition (0/1)

Data acquisition (1/1)

By design :

- → full detector read-out @ 1MHz
- → need to reduce the LHC collision rate from 40 MHz to 1Mhz

L0 : custom electronic @40Mhz, 4 μ s latency

- → based on Muon and calorimeters system
- → search for high- p_{T} µ, e, y, hadron candidates
- $p_T(\mu)>1.4$; $E_T(e/\gamma)>2.7$; $E_T(hadron)>3.6$ [GeV]

LOMuon made in Marseille

→ custom electronic boards

Data acquisition (1/1)

L0 : custom hardware trigger

HLT : software trigger

- → ~30000 tasks in parallel on over 1500 nodes
- → HLT1 : track and vertex reconstruction
- Impact parameter cuts
- → HLT2 : global event reconstruction and PID
- select exclusive and inclusive modes

Offline : ~10¹⁰ events, 700 TB recorded/year

- → centralized stripping selections to reduce the sample sizes to 0(10⁷) events for physics analysis
- → ~800 selections

Performances at 8 TeV in 2012 (L0xHLT)

- → B decays with $\mu\mu$: $\epsilon \approx 90 \%$
- → B decays with hadrons : $\epsilon \approx 30$ %
- → Charm decays : $\epsilon \approx 10 \%$

LHCb Operation

Luminosity

LHCb designed luminosity :

- $\mathcal{L}^{inst} = 2x10^{32} \text{ cm}^{-2}\text{s}^{-1}$ with $\mu = 0.4$ (# of visible pp int./crossing)
- Precision physics depending on vertex structure
 - → easier in a low-pileup environment

Luminosity levelling at LHCb

- run with constant luminosity
 - → beam overlap adjusted regularly
- automatic procedure between LHC&LHCb

2011 & 2012 instantaneous luminosities :

2011 : $\mathcal{L}^{inst} = \sim 3.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}, \ \mu = \sim 1.5$ 2012 : $\mathcal{L}^{inst} = \sim 4.0 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}, \ \mu = \sim 1.7$

Data Taking

Recorded Luminosity :

- → Run1 :
- 2011 : 1.1 fb⁻¹ @ 7 TeV
- 2012 : 2.1 fb⁻¹ @ 8 TeV
- → Run2 (on going)
- 2015-2017 : 3.7 fb⁻¹ @ 13 TeV
- 2018 : 0.7 fb⁻¹ @ 13 TeV \rightarrow as of today
- → Note : $\sigma(pp \rightarrow b\overline{b})_{Run2} \approx 2x \sigma(pp \rightarrow b\overline{b})_{Run1}$

LHCb upgrade (0/3)

LHCb upgrade (1/3)

Upgrade goal : increase instantaneous luminosity With current design : saturation of the yields

- → p_{T} cuts must be raised to cope with the 1 MHz limitation on the read-out rate
- \rightarrow no gain beyond 2-3 1032 cm-2s-1 for hadronic modes

LHCb upgrade (2/3)

↘ In preparation for Run3 (2020)

To benefit from higher luminosity :

- → remove L0 bottleneck
- → read full detector at 40 MHz

Full read out at 40 MHz:

- → replacement of all front-end and backend electronics
- → fast high-level software trigger

Replace some detector to cope with higher particle density

- → optimize geometry for fast reconstruction
- → sustain increased radiation dose

Final output bandwidth : 20 kHz

LHCb upgrade (2/3)

To benefit from higher luminosity :

- → remove L0 bottleneck
- → read full detector at 40 MHz

Full read out at 40 MHz:

- → replacement of all front-end and back-end electronics
- → fast high-level software trigger

Replace some detector to cope with higher particle density

- → optimize geometry for fast reconstruction
- \rightarrow sustain increased radiation dose

Final output bandwidth : 20 kHz

LHCb upgrade (3/3)

□ The 40 MHz detector :

LHCb future upgrade ?

Expression of Interest

Lepton Flavour Universality (LFU)

Introduction [a digression on LFU]

Let's go back ~ 100 years, and suppose we can test matter only with long wavelength photons...

These two particles seems to be "identical copies" but for their mass ...

Introduction [a digression on LFU]

Let's go back ~ 100 years, and suppose we can test matter only with long wavelength photons...

These two particles seems to be "identical copies" but for their mass ...

That's exactly the same (misleading) argument we use to infer LFU...

These three (families) of particles seems to be "<u>identical copies</u>" <u>but for their mass</u> ...

The SM quantum numbers of the three families could be an "accidental" <u>low-</u> <u>energy property</u>: the different families may well have a very different behavior at high energies, as <u>signaled by their different mass</u>

Highlight on some LHCb results

 biased selection with a focus on CPPM's activities

 \rightarrow The flavour anomalies :

- $b \rightarrow c$ transitions
- $b \rightarrow s$ transitions

Selected LHCb results

★ b → c transitions
★ b → s transitions

Anomalies in $b \rightarrow c\tau v$ transition

$$egin{aligned} \mathcal{R}(\mathcal{D}) &\equiv rac{\mathcal{B}(\mathcal{B}^0 o \mathcal{D}^- au^+
u_ au)}{\mathcal{B}(\mathcal{B}^0 o \mathcal{D}^- \ell^+
u_\ell)} &, \quad \ell \in \{\mu, oldsymbol{e}\} \ &\stackrel{ ext{SM}}{=} 0.300 \pm 0.008 \ , \end{aligned}$$

$$egin{aligned} \mathcal{R}(\mathcal{D}^*) &\equiv rac{\mathcal{B}(\mathcal{B}^0 o \mathcal{D}^{*-} au^+
u_ au)}{\mathcal{B}(\mathcal{B}^0 o \mathcal{D}^{*-} \ell^+
u_\ell)} \,, \quad \ell \in \{\mu, oldsymbol{e}\} \ &\stackrel{ ext{SM}}{=} 0.252 \pm 0.003 \end{aligned}$$

All measurements above the SM

Combining Belle, BaBar and LHCb

→ measurements are $\sim 4\sigma$ away form SM

At CPPM :

- \rightarrow participate in analysis of R(D) with Run2 data
- → if central value, BSM could be discovered !

CPPN

Selected LHCb results

b → *c* transitions *b* → *s*ℓℓ transitions

$b \rightarrow s\ell\ell$ transitions

$b \rightarrow s\ell\ell$ transitions are FCNC (flavour changing neutral current)

- \rightarrow forbidden in the SM at the tree level
- → only exist at loop level → highly suppressed → rare decay !

Physics beyond the Standard Model (BSM) enter at the same level as the SM

BSM can modify a range of observables

- → branching fractions
- → angular distributions
- → CP/isospin asymmetries

Different type of decays give access to different observables

→ sensitive to different BSM contributions

Correlation between the observables allow to identify the type of new physics involved

→ important to measure all possible observables

Ratios of $b \rightarrow s\mu\mu / b \rightarrow see$ transitions $\Rightarrow R(K^*) = \Gamma(B^0 \rightarrow K^{*0} \mu^+\mu^-) / \Gamma(B^0 \rightarrow K^{*0} e^+e^-)$

Branching fractions & isospin asymmetries

 $\rightarrow B \rightarrow K^{(*)} \mu^{+} \mu^{-}$

Branching fractions & angular analysis

$$\Rightarrow B \rightarrow K \mu^{+}\mu^{-}$$

$$\Rightarrow B_{s} \rightarrow \Phi \mu^{+}\mu^{-}$$

$$\Rightarrow \Lambda_{b} \rightarrow \Lambda \mu^{+}\mu^{-}$$

$$\Rightarrow B \rightarrow K e^{+}e^{-}$$

57

Model independent analysis of $b \rightarrow s$ transitions

 $M_{Z,W,t} \gg m_b \rightarrow$ low energy effective theory :

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} (C_i \mathcal{O}_i + C'_i \mathcal{O}'_i)$$

$$\stackrel{i = 1, 2, \dots, \text{ tree}}{\underset{i = 3-6, 8, \dots, gluon penguin}{\underset{i = 9, 10, \dots, gluon penguin}}}$$

- Local operators O_i depends on hadronic form factor
 - → (dominant) source of theoretical uncertainties
- Wilson coefficients C_i describe the short distance effect
 - → can be modify by new physics : $C = C^{SM} + C^{NP}$

(including operators not present or suppressed in the SM)

Results interpretation

Global fit (with all $b \rightarrow s\ell\ell$ observables) Favours new physics contribution to the coefficient C_9

- \rightarrow significance almost 5 σ !
- Implies a violation of the lepton universality
 - \rightarrow significance > 3 σ

More measurements needed !

CPPM $b \rightarrow s\ell\ell$ activities

CPPM worked on the B $\,\rightarrow\,\mu\mu$ analysis

Now, focus on decays with $\boldsymbol{\tau}$ in the final state

- $B_{(s)} \rightarrow \tau^+\tau^-$ (just published)
 - Analysis
 - \rightarrow the τ decay in flight and are not reconstructed
 - → use the τ → $\pi\pi\pi\nu$ mode
 - neutrino escapes detection
 - missing energy
 - no invariant mass reconstruction
 - Results :
 - \rightarrow upper limits on branching ratio :
 - BR(B_s→τ τ) < 6.8 10⁻³ (first limit)
 - BR(B⁰ \rightarrow T T) < 2.1 10⁻³ (best limit)

On going :

- $\ \, \Rightarrow \ \, \mathsf{B}_{s} \ \rightarrow \ \, \mathsf{K}^{\star} \ \, \tau \ \, \tau \ \,$
- → $B_{(s)}$ → $\tau \mu$ (lepton flavour violation !)

Still many open questions in and beyond the Standard Model

Without any sign of new physics in the direct search, the precision era is open !

The heavy flavour sector is still a promising sector for BSM discoveries

More data and measurements are needed to resolve the tensions that are building up in heavy hadrons decays

→ Lepton flavour non-universality ???