laure.ciesla@lam.fr

Galaxy Evolution

Laure Ciesla

 $M_{MW} = 9.6 \times 10^{11} M_{sol}$

1.7 billion stars on this image

→ ANATOMY OF THE MILKY WAY

eesa

Magallania Cloud

Large Magellanic Cloud

Small Magellanic Cloud

Large Magellanic Cloud

Small Magellanic Cloud

Local Group and nearest galaxies

Superamas de la Vierge

Galaxies have different shapes

HUBBLE-DE VAUCOULEURS DIAGRAM

Galaxies have different colors

Alatalo+14

Massive galaxies become more rapidly passive

What are the mechanisms responsible for galaxies' quenching?

Several scenarios proposed

Gaz

Slow process: Strangulation e.g. Peng+15

What are the mechanisms responsible for galaxies' quenching?

Several scenarios proposed

Gas

Fast process: Gas stripping e.g. Gunn&Gott72, Larson+90, Tonnesen&Bryan09

What are the mechanisms responsible for galaxies' quenching?

Probing the SFR with Halpha and UV

B, V, I

+ES+ 0 +

ESO PR Photo 02c/01 (10 January 2001)

© European Southern Observatory

B, V, I

B, I, K

Pre-Collapse Black Cloud B68 (comparison) (VLT ANTU + FORS 1 - NTT + SOFI)

ESO PR Photo 02c/01 (10 January 2001)

© European Southern Observatory

Probing the SFR with radio

Supernova: death of a massive star

In supernova remnant: synchrotron emission seen in radio

Probing the SFR with X-ray

Star Formation Rate Calibrations

Band	Age Range (Myr) ^a	L_x Units	$\log C_x$
FUV	0 - 10 - 100	$ m ergss^{-1}~(\nu L_{ u})$	43.35
NUV	0 - 10 - 200	$ m ergss^{-1}~(\nu L_{ u})$	43.17
m H lpha	0 - 3 - 10	${ m ergss^{-1}}$	41.27
TIR	$0-5-100^{ m b}$	${ m ergss^{-1}}~(3{-}1100\mu{ m m})$	43.41
$24\mu{ m m}$	$0-5-100^{ m b}$	$ m ergss^{-1}~(\nu L_{\nu})$	42.69
$70\mu{ m m}$	$0-5-100^{ m b}$	$ m ergss^{-1}~(\nu L_{\nu})$	43.23
$1.4~\mathrm{GHz}$	0 - 100:	$ m ergss^{-1}Hz^{-1}$	28.20
2-10 keV	0 - 100:	$ m ergss^{-1}$	39.77

Kennicutt & Evans 2012

Spectral Energy Distribution (SED)

Spectral Energy Distribution (SED)

Star Formation Rate Density

Redshift

 FUTURE
 James Webb Space Telescope

 Redshift (z):
 1
 4
 5
 6
 7
 8
 10
 >20

 Time after the Big Bang
 Present
 6
 1.5
 800
 480
 200

 willion years
 billion years
 billion years
 billion years
 billion years
 million years

Star Formation Rate Density

Noeske+07, Elbaz+07, Daddi+10, Rodighiero+11, Elbaz+11, Schreiber+15

Star Formation History of Galaxies

Lee+10, Pacifici+13, Behroozi+13, Pacifici+16Papovich+01, Maraston+10, Pforr+12, Gladders+13, Simha+14, Buat+14, Ciesla+15; Abramson+16, Ciesla+16, Iyer&Gawiser17, Ciesla+17a, Abramson+17

SFH of individual galaxies

