B_01: Development of the software package CKMfitter

R.Itoh KEK on behalf of CKMfitter-FJPPL collaboration

FJPPL'09, Epochal Tsukuba, May 20-21 2009

Outline

1. Introduction

2. Averaging ϕ_3/γ for the input of CKMfit

3. Determination of Wilson Coefficients

4. Summary and Prospects

1. Introduction

- The software package CKMfitter is being developed to determine basic physics parameters such as (ρ,η) in the unitarity triangle by the simultaneous fit to various experimental measurements.
- CKMfitter was first written in Fortran ~10 years ago, but recently rewritten completely in Mathematica for the speed up. (>10 times faster).
- The enhancement of CKMfitter is going on under FJPPL framework.
 - * New treatment of ϕ_3/γ average in the CKM fit.
 - * Determination of Wilson coefficients by the global fit.

CKMfitter : χ^2 minimizer originally developed to constrain unitarity triangle by accepting various experimental measurements (sin2 ϕ_1 , ϕ_2 , ϕ_3 , V_{ub}, Δm_d , Δm_s)

- Statistical approach : Frequentist (Rfit)

See Eur. Phys. J. C41, 1 (2005) for detail

- Originally coded in Fortran and specialized in calculating unitarity triangle constraints. Minimizer : MINUIT in CERNLIB
- Rewritten in Mathematica in 2006 for speed up.
 - * Analytic simplification of theoretical formula helps to reduce the calculation time. (>O(10) faster than Fortran version).
 - * Generalized χ^2 minimizer

This plot was shown by Prof. Kobayashi in his Nobel prize lecture!

R.Itoh, FJPPL'09

2. Averaging ϕ_3/γ

- Angle ϕ_3/γ in unitarity triangle is measured by the interference between $B \rightarrow D^0 K^-$ and $B \rightarrow \overline{D^0} K^-$ at B-factories

ϕ_3/γ and r_B - error in ϕ_3/γ has a strong dependence on r_B

- If r_B is small, fitted r_B value is biased towards higher values which results in the biased smaller error in ϕ_3/γ . \rightarrow undercoverage problem
- Combined treatment of ϕ_3/γ and r_B is necessary to average the measurements.
 - \rightarrow GLW/ADS/GGSZ implies 31 observables + 9 nuisance parameters $\rightarrow \rightarrow$ very complicated!

R.Itoh, FJPPL'09

Methodology of averaging

a) If the measurements follow the standard χ² law, the PDF is the standard cumulative distribution function(prob).
b) If not, the PDF depends on the nuisance parameters μ = (r_B, δ_B,) : PDF is determined by toy MC experiments.

- * Choice of nuisance parameters for b)
 - μ_{hat} method: nuisance parameters are fixed at the best parameter values for the given ϕ_3/γ .
 - Supremum method : choose least favored values of nuisance parameters.

Apparently case b) for ϕ_3/γ . Try to compare both in ϕ_3/γ determination .

Coverage test

Compare the coverage of cases a) and b)

Method: toy MC

- 1. Fix some true value of
 - ϕ_3/γ : parameter of interest
 - $\mu = (r_{_{\rm B}}, \delta_{_{\rm B}})$: nuisance parameters
- 2. Generate a large sample of toy experiments
- 3. For each experiment, compute $CL(\phi_3/\gamma)$ at the ϕ_3/γ = true ϕ_3/γ .
- 4. The fraction of experiments with $CL(\phi_3/\gamma)$ > given a gives the coverage.
- Scan nuisance parameter $r_{_{\rm B}}$ in GGSZ analysis and compare the coverage.

* $\phi_3 / \gamma = 60^\circ$, $\delta_B = 140^\circ$, scan range for $r_B : \{0.001, 0.15\}$

* estimate $CL(\mu=\mu_{true})$ in the toyMC sample and then calculate the fraction of experiments with $CL(\mu=\mu_{true})>\alpha$. Scan results:

- Large undercoverage by the standard "prob" is observed for smaller r_R.
- Undercoverage is still seen in μ_{hat} method also.

Coverage test with full inputs (31 obs. + 9 nuisance par's)

		Coverage results				
method	CL	CKM08 values Best Fit scenario	r _g 's = 0.04 Small Ratio scenario			
	68%	$(60 \pm 1)\%$	$(41 \pm 1)\%$			
Prob	95%	$(\textbf{90.5}\pm\textbf{0.5})\textbf{\%}$	$(77.8 \pm 0.8)\%$			
	99.73%	$(99.2\pm0.2)\%$	$(96.2 \pm 0.4)\%$			
	68%	$(66.7 \pm 0.9)\%$	$(55.7 \pm 0.9)\%$			
û	95%	$(\textbf{94.4}\pm\textbf{0.4})\textbf{\%}$	$(91 \pm 0.5)\%$			
	99.73%	$(99.80\pm0.09\%$	$(99.5\pm0.2)\%$			
	68%	$(87.5 \pm 0.7)\%$	(77 ± 1) %			
supremum	95%	$(\textbf{98.9}\pm\textbf{0.2})\textbf{\%}$	$(95.9\pm0.6)\%$			
	99.73%	$(99.92 \pm 0.05)\%$	$(99.6 \pm 0.2)\%$			
We use	e this met	hod although over	coverage is observed.			

Current constraint on ϕ_3/γ

Combined constraint on γ

 $\gamma = (70^{+27}_{-30})^{\circ}$ (direct) vs. $\gamma = (67.8^{+4.2}_{-3.9})^{\circ}$ (indirect)

3. Determination of Wilson coefficients

- In the framework of CKM fit, the NP effect is searched for in the B_{d,s}-B_{d,s} mixing diagram (ΔB=2 transition).
 i.e. comparison of p-η constraints by (β/φ₁, α/φ₂, Δm_{d,s}) and by (γ/φ₃, V_{ub})
- A complementary NP search can be performed by studying the FCNC transitions like $B \rightarrow X_s \gamma$ and $B \rightarrow X_s I^{\dagger}I^{-}$ which are governed by Wilson coefficients C_7 , C_9 and C_{10} (Δ F=1 FCNC).
- The determination of Wilson coefficients using various FCNC decays simultaneously in a similar manner as that for CKM fit (global fit) can be a sensitive probe to NP by comparing with the SM expectations.

S.T'Jampens

$\Delta F=1$ FCNC: b \rightarrow s transitions and OPE

G. Hiller - hep-ph/0308180

Describe *b*→*s* transitions by an effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{\text{ts}}^* V_{\text{tb}} \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)$$

- Long Distance:
 - Operators O_i
- Short Distance:
 - Wilson coef. C_i

New physics shows up as modified C_i , (or as new operators)

Implementation of Wilson coefficient fit in CKMfitter

- Belle's measurement of $A_{_{FB}}$ in B \rightarrow K*II already gives a good constraints to Wilson coefficients.
- The extension of this approach is considered by including other measurements together in the fit.
- Inputs
 - * Br(B \rightarrow K* γ)
 - * Br(B \rightarrow K* $\mu^+\mu^-$)
 - * $A_{FB}(B \rightarrow K^*I^+I^-)$ as a function of q^2
- Free parameters : Wilson Coefficients C_7 , C_9 and C_{10} .

Code as an add-on theory model for CKMfitter written in Mathematica.

Theory model

- Need to implement "consistent" theory models for all the measurements used in the fit.

- The models described in the paper by A.Ali, et al. (Phys. Rev. D 61, 074024 (2000)) are adoped.

* A little bit obsolete, but it gives all calculations for $Br(B \rightarrow K^*\gamma)$, $Br(B \rightarrow K^*\mu^+\mu^-)$, and $A_{_{FB}}(B \rightarrow K^*l^+l^-)$ in a consistent way and is a good starting point for the trial.

- Treatment of Wilson coefficients in the model:

$$C_{7}^{\text{eff}} = C_{7}$$
$$C_{9}^{\text{eff}}(s) = C_{9} + Y(s)$$
$$C_{10}$$

1)
$$\operatorname{Br}(\mathsf{B} \to \mathsf{K}^*\gamma) = \frac{G_F^2 \alpha |V_{ts}^* V_{tb}|^2}{32\pi^4} m_b^2 m_B^3$$

 $\times (1 - m_{K_*}^2 / m_B^2)^3 |C_7^{\operatorname{eff}}|^2 |T_1(0)|^2,$
2) $\operatorname{Br}(\mathsf{B} \to \mathsf{K}^*\mu^+\mu^-) = a_{K_*}^{(nr)} |C_7^{\operatorname{eff}}|^2 + b_{K_*}^{(nr)} |C_9|^2 + c_{K_*}^{(nr)} |C_{10}|^2$
 $+ d_{K_*}^{(nr)} C_7^{\operatorname{eff}} C_9 + e_{K_*}^{(nr)} C_7^{\operatorname{eff}} + f_{K_*}^{(nr)} C_9$
 $+ g_{K_*}^{(nr)}.$ (6.9)

* a_{κ}^{*} - g_{κ}^{*} : Form factors calculated using LCSR

	$a_{K^{*}}^{(sr)}$	$b_{K^{\ast}}^{(\pi r)}$	$c_{K^{\oplus}}^{(\pi r)}$	$d_{K^{\circledast}}^{(nr)}$	$e_{K^{\circledast}}^{(nr)}$	$f_{K^{\circledast}}^{(nr)}$	$g_{K^{\oplus}}^{(nr)}$
FF(central)	21.295	0.502	0.500	3.530	1.434	0.413	0.148
FF(max)	28.183	0.630	0.633	4.577	1.859	0.520	0.183
FF(min)	16.795	0.417	0.416	2.864	1.164	0.343	0.125

3)
$$A_{FB}(B \rightarrow K^*II)$$

$$\frac{dA_{FB}}{d\hat{s}} = \frac{G_F^2 \alpha^2 m_B^5}{2^{10} \pi^5} |V_{ts}^* V_{tb}|^2 \hat{s} \hat{u}(\hat{s})^2 [\operatorname{Re}(BE^*) + \operatorname{Re}(AF^*)]$$

$$= \frac{G_F^2 \alpha^2 m_B^5}{2^8 \pi^5} |V_{ts}^* V_{tb}|^2 \hat{s} \hat{u}(\hat{s})^2 C_{10} \left[\operatorname{Re}(C_9^{\text{eff}}) VA_1 + \frac{\hat{m}_b}{\hat{s}} C_7^{\text{eff}} (VT_2(1 - \hat{m}_{K^*}) + A_1T_1(1 + \hat{m}_{K^*}))\right].$$

Normalized A_{FB} = Experimental inputs:

$$\frac{\mathrm{d}\overline{\mathcal{A}}_{\mathrm{FB}}}{\mathrm{d}\hat{s}} = \frac{\mathrm{d}\mathcal{A}_{\mathrm{FB}}}{\mathrm{d}\hat{s}} / \frac{\mathrm{d}\Gamma}{\mathrm{d}\hat{s}}$$

Output of coded model $(C_7, C_9, C_{10} = SM \text{ values})$

Confirmed to reproduce the results in the paper

4) Form factors

Based on light corn sum rule (LCSR) approach

Parametrization: $F(\hat{s}) = F(0)\exp(c_1\hat{s} + c_2\hat{s}^2 + c_3\hat{s}^3).$

		f_+	f_0	f_T	A_1	A_2	A_0	V	T_1	T_2	T_3
central value	F(0) c ₁ c ₂ c ₃	0.319 1.465 0.372 0.782	0.319 0.633 - 0.095 0.591	0.355 1.478 0.373 0.700	0.337 0.602 0.258 0	0.282 1.172 0.567 0	0.471 1.505 0.710 0	0.457 1.482 1.015 0	0.379 1.519 1.030 0	0.379 0.517 0.426 0	0.260 1.129 1.128 0
		f_+	f_0	f_T	A_1	A_2	A_0	V	T_1	<i>T</i> ₂	<i>T</i> ₃
maximum	F(0) c ₁ c ₂ c ₃	0.371 1.412 0.261 0.822	0.371 0.579 - 0.240 0.774	0.423 1.413 0.247 0.742	0.385 0.557 0.068 0	0.320 1.083 0.393 0	0.698 1.945 0.314 0	0.548 1.462 0.953 0	0.437 1.498 0.976 0	0.437 0.495 0.402 0	0.295 1.044 1.378 0
minimum	F(0)	f ₊ 0.278 1.568 0.470	f ₀ 0.278 0.740 0.080	f _T 0.300 1.600 0.501	A ₁ 0.294 0.656 0.456	A ₂ 0.246 1.237 0.822	A ₀ 0.412 1.543 0.954	V 0.399 1.537 1.123	T ₁ 0.334 1.575 1.140	T ₂ 0.334 0.562 0.481	T ₃ 0.234 1.230 1.089
	c ₃	0.885	0.425	0.796	0	0	0	0	0	0	0

parameters for K*ll

* maximum/minimum : treated in "Rfit"

Fit to experimental measurements

- Use HFAG08 data for Br(K* γ) and Br(K* $\mu\mu$) + Belle's new A_{FR}

Br(B
$$\rightarrow$$
K* γ) = (40.3 ± 2.6) x 10⁻⁶ (HFAG08)

 $Br(B \rightarrow K^* \mu \mu) = 0.78 \pm 0.50 \times 10^{-6}$ (HFAG08)

Belle's new $A_{_{FB}}(B \rightarrow K^*II)$ measurements with 605/fb

J.-T.Wei (Belle)

$q^2 \; (\mathrm{GeV}^2/c^2)$	A_{FB}
0-2	$0.47^{+0.26}_{-0.32}\pm0.03$
2-5	$0.14^{+0.20}_{-0.26}\pm0.07$
5-8.68	$0.47^{+0.16}_{-0.25}\pm0.14$
10.09-12.86	$0.43^{+0.18}_{-0.20}\pm0.03$
14.18 - 16	$0.70^{+0.16}_{-0.22}\pm0.10$
> 16	$0.66^{+0.11}_{-0.16} \pm 0.04$

6 points

- quadratic sum of stat. and sys. errors
- errors are symmetrized

b) Fit with uncertainties in form factors

2-D scan results

Results of fit to measurements

* No "reasonable" constraints on $C_{7,}C_{9}$ nor C_{10} to state NP or SM ?????

* Preferred central values by the fit: $C_7 = +0.25$ $C_0 = +2.3$ $C_{10} = -3.2$

Comparison of measurements and predictions with these values

4. Summary and Prospects

* The CKMfitter development under FJPPL is actively going on.

* Two achievements have been done in JFY2008
1) The treatment nuisance parameters in φ₃/γ averaging was studied: supremum method offers the best coverage and will be the default for the averaging.
2) The first trial of Wilson coefficient determination by the global fit was made.

* Prospects for JFY2009:
1) Extend the methodology to treat nuisance parameters to other averaging + publication.
2) Add inclusive radiative decays to Wilson coefficient fit + update of theoretical model (NNLO).

* CKMfitter activities become more important in coming years to cope with new results by LHCb and new-generation B-factory experiments.