Experimental Searches for Muon to Electron Conversion

Yoshitaka Kuno Department of Physics Osaka University

May 20th, 2009 FJPPL, EPOCHAL, Tsukuba

Outline

- Overview of Our Proposal to FJPPL
- Physics Motivation of Lepton Flavor Violation of Charged Leptons (cLFV)
- What is μ -e conversion in a muonic atom ?
- Experimental searches for μ-e conversion at J-PARC (COMET)
- Summary

New Proposal

Overview of Our Proposal to FJPPL

- The objective of this year's proposal is to hold a mini-workshop in France to increase collaborators in France. And then we will invite the people who are interested to Japan for further discussions.
- Funding Requests
 - from France : 10,000 Euro for travel, organization of LFV miniworkshop
 - from KEK : none
- Additional funding
 - from Osaka University (including Kakenhi) :
 - 5,000 Euro for travel
 - about 50,000 Euro for postdoc
 - about 50,000 Euro for equipments

Apology for my mistakes!

Physics Motivation of cLFV

Lepton Flavor Violation of Charged Leptons (cLFV)

LFV of charged leptons is not observed.

Standard Model Contribution from Neutrino Mixing (GIM mechanism)

A Large Window for New Physics beyond the Standard Model

Various Models Predict cLFV....

cLFV in SUSY Models

Features

- The decay rate is not too small, because it is determined by the SUSY mass scale.
- But, it contains the information at 10¹⁶ GeV through the slepton mixing.
- It is in contract to proton decays or double beta decays which need many particles.

Through quantum corrections, LFV could access ultra-heavy particles such as v_R (~10¹²-10¹⁴ GeV/c²) and GUT that cannot be produced directly by any accelerators.

SUSY GUT and SUSY Seesaw

SUSY Predictions for cLFV

Short Summary of Physics Motivation : cLFV, Energy Frontier and SUSY

- In SUSY models, cLFV is sensitive to slepton mixing.
- LHC would have potentials to see SUSY particles. However, at LHC nor even ILC, slepton mixing would be difficult to study in such a high precision as proposed here.

- Slepton mixing is sensitive to either (or both) Grand Unified Theories (SUSY-GUT models) or neutrino seesaw mechanism (SUSY-Seesaw models).
- If cLFV sensitivity is extremely high, it might be able to explore multi-TeV SUSY which LHC cannot reach, in particular SUSY parameters.

What is a Muon to Electron Conversion?

1s state in a muonic atom

nuclear muon capture

$$\mu^- + (A, Z) \longrightarrow \nu_\mu + (A, Z - 1)$$

Neutrino-less muon nuclear capture (=µ-e conversion)

$$\mu^- + (A, Z) \rightarrow e^- + (A, Z)$$

lepton flavors changes by one unit.

$$B(\mu^{-}N \rightarrow e^{-}N) = \frac{\Gamma(\mu^{-}N \rightarrow e^{-}N)}{\Gamma(\mu^{-}N \rightarrow vN')}$$

µ-e Conversion Signal and Backgrounds

$$\mu^- + (A, Z) \rightarrow e^- + (A, Z)$$

Signal

 single mono-energetic electron

 $m_{\mu} - B_{\mu} \sim 105 MeV$

- The transition to the ground state is a coherent process, and enhanced by a number of neuclus.
 - $\propto Z^5$

 The ratio of excited states versus the ground state is about 1:9 for Ti.

Backgrounds

Category	Examples of backgrounds	
Intrinsic Physics Backgrounds	muon decay in orbit (DIO)	
	particle emissions from nuclear muon capture	
	radiative muon capture (RMC)	
Beam-related backgrounds	radiative pion capture (RPC)	
	muon decay in flight	
	neutrons, kaons, and anti-protons	
Other Backgrounds	cosmic rays	
	miss-tracking events	

Physics Sensitivity Comparison between $\mu \rightarrow e\gamma$ and $\mu - e$ Conversion

Photonic (dipole) and non-photonic contributions

	photonic (dipole)	non- photonic
μ→eγ	yes (on-shell)	no
µ-e conversion	yes (off-shell)	yes

more sensitive to new physics

SUSY Higgs Mediated Contribution (large tan β)

Experimental Comparison between $\mu \rightarrow e\gamma$ and μ -e Conversion

	background	challenge	beam intensity
• μ→eγ	accidentals	detector resolution	limited
• µ-e conversion	beam	beam background	no limitation

- µ→eγ: Accidental background is given by (rate)². The detector resolutions have to be improved, but they (in particular, photon) would be hard to go beyond MEG from present technology. The ultimate sensitivity would be about 10⁻¹⁴ (with about 10⁸/sec) unless the detector resolution is radically improved.
- µ-e conversion : Improvement of a muon beam can be possible, both in purity (no pions) and in intensity (thanks to muon collider R&D). A higher beam intensity can be taken because of no accidentals.

µ-e conversion might be a next step.

Experimental Search for Muon to Electron Conversion

Previous Measurements

SINDRUM-II (PSI)

PSI muon beam intensity ~ 10⁷⁻⁸/sec beam from the PSI cyclotron. To eliminate beam related background from a beam, a beam veto counter was placed. But, it could not work at a high rate.

Published Results (2004)

$$B(\mu^{-} + Au \to e^{-} + Au) < 7 \times 10^{-13}$$

Improvements for Signal Sensitivity

To achieve a single sensitivity of 10⁻¹⁶, we need

10¹¹ muons/sec (with 10⁷ sec running)

whereas the current highest intensity is 10⁸/sec at PSI.

Pion Capture and Muon Transport by Superconducting Solenoid System

Improvements for Background Rejection

base on the MELC proposal at Moscow Meson Factory

Mu2E at Fermilab

- After Tevatron shutdown, use the antiproton accumulator ring and debuncher ring for beam pulsing.
- Proton beam power is 20 kW and 200 kW for pre and post Project-X.

COMET (COherent Muon to Electron Transition) in Japan

Design Difference Between Mu2e and COMET

	Mu2e	COMET
Muon Beam-line	S-shape	C-shape
Electron Spectrometer	Straight solenoid	Curved solenoid

Muon Transport Solenoid Beam-line for COMET

- C-shape beam line :
 - better beam momentum separation
 - collimators can be placed anywhere.
- Radius of curvature is about 3 meters.
- A straight solenoid section can be inserted between the two toroids.
- Reference momentum is 35 MeV/c for 1st bend and 47 MeV/c for 2nd bend.

Curved Solenoid Spectrometer for COMET

- 180 degree curved
 - Bore radius : 50 cm
 - Magnetic field : 1T
 - Bending angle : 180 degrees
- reference momentum ~ 104 MeV/c
- elimination of particles less than 80 MeV/c for rate issues
- a straight solenoid where detectors are placed follows the curved spectrometer.

schematic

Event Displays for Curved Solenoid Spectrometer

Signal Sensitivity (preliminary) - 1 SSC years

Single event sensitivity

$$B(\mu^- + Al \to e^- + Al) \sim \frac{1}{N_\mu \cdot f_{cap} \cdot A_e},$$

- N_μ is a number of stopping muons in the muon stopping target. It is 1.1x10¹⁸ muons.
- f_{cap} is a fraction of muon capture, which is 0.6 for aluminum.

total protons	4x10 ²⁰
muon transport efficiency	0.009
muon stopping efficiency	0.3
# of stopped muons	1.1x10 ¹⁸

• A_e is the detector acceptance, which is 0.04.

 $B(\mu^{-} + Al \to e^{-} + Al) = 3.3 \times 10^{-17}$ $B(\mu^{-} + Al \to e^{-} + Al) < 7 \times 10^{-17} \quad (90\% C.L.)$

$$B(\mu^- + Al \to e^- + Al) < 10^{-16}$$

Sensitivity Goal

Background Rejection Summary (preliminary)

Backgrounds	Events	Comments
Muon decay in orbit	0.05	230 keV resolution
Radiative muon capture	<0.001	
Muon capture with neutron emission	<0.001	
Muon capture with charged particle emission	<0.001	
Radiative pion capture*	0.12	prompt
Radiative pion capture	0.002	late arriving pions
Muon decay in flight*	<0.02	
Pion decay in flight*	<0.001	
Beam electrons*	0.08	
Neutron induced*	0.024	for high energy neutrons
Antiproton induced	0.007	for 8 GeV protons
Cosmic-ray induced	0.10	10 ⁻⁴ veto & 2x10 ⁷ sec run
Pattern recognition errors	<0.001	
Total	0.4	

Overview of Our Proposal to FJPPL

- The objective of this year's proposal is to hold a mini-workshop in France to increase collaborators in France. And we will invite the people who are interested to Japan for further discussions.
- Funding Requests
 - from France : 10,000 Euro for travel, organization of LFV miniworkshop
 - from KEK : none
- Additional funding
 - from Osaka University (including Kakenhi) :
 - 5,000 Euro for travel
 - about 50,000 Euro for postdoc
 - about 50,000 Euro for equipments

Apology for my mistakes!

End of My Slides

