FJPPL-Nu_2-WP3 R&D of detectors for future high statistics, high precision experiment R&D for neutrinoless Double Beta Decay experiments

Nobuhiro ISHIHARA (KEK)

Contents

- 1. Introduction to DBD
- 2. Effective neutrino mass sensitivity
- 3. NEMO and DCBA
- 4. Concluding remarks

Double Beta Decay

 $2\nu\beta\beta: (Z,A) \rightarrow (Z+2,A) + 2e^- + 2\overline{\nu}$

Ovbb: $(Z, A) \rightarrow (Z+2, A) + 2e^{-1}$

Lepton number violation process

Effective neutrino mass $\langle m_{\beta\beta} \rangle$

FJPPL PROGRAM : Nu_2-WP3

R&D of detectors for future high statistics, high precision experiment R&D for neutrinoless Double Beta Decay experiments

France	NEMO3 & Super NEMO
	NEMO: Neutrino Ettore Majorana Observatory
	Leader F. Piquemal

Japan DCBA & MTD DCBA: Drift Chamber Beta-ray Analyzer MTD: Magnetic Tracking Detector (temporary) Leader Y. Yamada, Sub-leader N. Ishihara

F. Piquemql

The NEMO3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

April 6, 2009

Background: natural radioactivity, mainly ²¹⁴Bi et ²⁰⁸Tl (γ 2.6 MeV)Radon, neutrons (n, γ), muons, $\beta\beta(2\nu)$ **<u>Source</u>:** 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water + Wood

Able to identify e^- , e^+ , γ and α

N. Ishihara, Workshop FJPPL'0

NEMO 3: ¹⁰⁰Mo ββ0ν results

From NEMO-3 to SuperNEMO... challenges

$$T_{1/2}(\beta\beta0\nu) > \ln 2 \times \frac{\mathcal{N}_{A}}{A} \times \frac{\mathbf{M} \times \boldsymbol{\varepsilon} \times \mathbf{T}_{obs}}{\mathbf{N}_{90}}$$

F. Piquemql April 6, 2009

NEMO-3		SuperNEMO
¹⁰⁰ Mo	isotope	¹⁵⁰ Nd or ⁸² Se
	isotope mass M	
8 %	efficiency ε	~ 30 %
²⁰⁸ Tl: < 20 μBq/kg ²¹⁴ Bi: < 300 μBq/kg	internal contaminations ²⁰⁸ Tl and ²¹⁴ Bi in the ββ foil	²⁰⁸ Tl < 2 μBq/kg <i>if ⁸²Se</i> : ²¹⁴ Bi < 10 μBq/kg
8% @ 3MeV	energy resolution (FWHM)	4% @ 3 MeV
$T_{1/2}(\beta\beta0\nu) > 2 \ge 10^{24} y$ <m<sub>ν> < 0.3 – 1.3 eV</m<sub>		$T_{1/2}(ββ0ν) > 2 \times 10^{26} y$ <m<sub>v> < 50 meV</m<sub>

SuperNEMO conceptual design

20 modules for 100 kg

Source (40 mg/cm²) 12m² Tracking (~2-3000 Geiger cells). Calorimeter (600 channels)

Total:~ 40 000 - 60 000 geiger cells ~ 12 000 PM

Top view

1 m

20 May 2009

N. Ishihara, Workshop FJPPL'09

10

Energy spectra of conversion electrons from ²⁰⁷Bi

DCBA-T2

Resolution corresponding to the sum energy of two β 's.

$$\frac{\text{FWHM}(E_{sum})}{\text{Q}_{150}_{\text{Nd}}(3.37 \text{ MeV})} \approx 6.2\%$$

Background 2-electron event

Concluding remarks

- 1. If neutrinos are Majorana particles, neutrinoless double beta decay $(0\nu\beta\beta)$ takes place.
- 2. The half-life of $0\nu\beta\beta$ gives us the absolute mass scale of neutrino.
- 3. The R&D's with NEMO3 and DCBA are aiming at the constructions of future detectors SuperNEMO and MTD (temporary name), respectively, which will have the sensitivity of effective neutrino mass $\langle m_{\beta\beta} \rangle$ down to 30 meV.
- 4. Both detectors have tracking devices, which are very useful to eliminate background events.
- 5. The information of tracking and background elimination will be actively exchanged between two groups in FJPPL.