Partons and jets in a strongly coupled plasma from AdS/CFT

Edmond Iancu IPhT Saclay & CNRS

Collaboration with Yoshitaka Hatta and Al Mueller (lecture notes arXiv:0812.0500)

Laboratoire de Physique Corpusculaire de Clermont-Ferrand, 20 mars 2009

Partons and jets in a strongly coupled plasma from AdS/CFT - p. 1

Introduction

Introc	luction

Outline

Motivation

- Partons and jets in pQCD
- Hard probes in AdS/CFT
- Partons from AdS/CFT
- Jet quenching
- Conclusions
- Backup

- Experimental results at RHIC suggest that the deconfined hadronic matter ('Quark–Gluon Plasma') produced in a AA collision at high energy might be strongly interacting
- A challenge for the theory: lattice QCD cannot be used for such dynamical phenomena
 - New method: string theory via AdS/CFT correspondence
 - not yet QCD: conformal symmetry, no confinement
 - at high energy and/or finite temperature, such issues are (presumably) less important, even in QCD
- A vigourous activity with many interesting results
 - conceptually interesting relations between particle physics, string theory, gravity, black holes
 - physical interpretation of the results is very challenging

Outline

Introduction
Outline
Motivation
Partons and jets in pQCD
Hard probes in AdS/CFT

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

- Motivation : Heavy Ion Collisions at RHIC and LHC
- Weak coupling: Partons and jets in perturbative QCD
- Strong coupling: AdS/CFT Correspondence
- Finite—T plasma: Deep inelastic scattering & Parton saturation
- Finite—*T* plasma: Jet quenching & Momentum broadening

Ultrarelativistic heavy ion collisions @ RHIC and LHC

- Extremely complex phenomena
 - high density partonic systems in the initial wavefunctions
 - multiple interactions during the collisions
 - complicated, non-equilibrium, dynamics after the collision
 - expansion, thermalization, hadronisation
- Is there any place for strong–coupling dynamics ?

(A)

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

Hadron production at RHIC

Introduction	
Outline	
Motivation	
●RHIC	
Elliptic flow	
 Viscosity/entropy 	
Lattice QCD	
 Resummations 	
 Jets in AA 	
Partons and jets in pQCD	
Hard probes in AdS/CFT	
Partons from AdS/CFT	
Jet quenching	
Conclusions	
Backup	
	~ 300

Œ

- ~ 3000 hadrons in the final state vs. 400 nucleons in AA
- Most of them arise as hadronized partons
- Particle correlations are essential to disentangle phenomena

Elliptic flow at RHIC: The perfect fluid

Conclusions

(A)

Backup

Non-central AA collision: Pressure gradient is larger along x

 $\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2v_2 \cos 2\phi, \qquad v_2 = \text{"elliptic flow"}$

Well described by hydrodynamical calculations with very small viscosity/entropy ratio: "perfect fluid"

Introduction

Outline

Elliptic flow
Viscosity/entropy
Lattice QCD

Resummations
Jets in AA

Partons and jets in pQCD

Hard probes in AdS/CFT

Partons from AdS/CFT

Viscosity over entropy density ratio

■ Viscosity/entropy density ratio at RHIC (in units of ħ)

 $\frac{\eta}{s} = 0.1 \pm 0.1$ (theor) ± 0.08 (exp) [\hbar]

• Weakly interacting systems have $\eta/s \gg \hbar$

Kinetic theory: viscosity is due to collisions among molecules

 $\eta \sim \rho v \ell = \text{mass density} \times \text{velocity} \times \underbrace{\text{mean free path}}_{\sim 1/g^4}$

Conjecture (from AdS/CFT) : [Kovtun, Son, Starinets, 2003]

 $\frac{\eta}{s} \ge \frac{\hbar}{4\pi}$ [lower limit = infinite coupling]

• The RHIC value is at most a few times $\hbar/4\pi$!

Conclusions

Backup

Jet quenching

Heating QCD : Lattice results

Energy density as a function of T (Bielefeld Coll.)

(A)

Finite–*T* : **Resummed perturbation theory**

This ratio $p/p_0 \approx 0.85$ can be also explained by resummed perturbation theory

(collective phenomena: screening, thermal masses)

(J.-P. Blaizot, A. Rebhan, E. lancu, 2000)

First principle calculation without free parameter

Introduction

Outline

Motivation

RHIC

Elliptic flow

• Viscosity/entropy

Lattice QCD

Resummations

Jets in AA

Partons and jets in pQCD

Hard probes in AdS/CFT

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

Jets in proton–proton collisions

(A)

Nucleus-nucleus collision

(A)

Introduction

Outline

●e+e-

Jets3-iet

● DIS ● F2

Motivation

Partons and jets in pQCD

Bremsstrahlung

Parton evolution
Gluons at RHIC
Saturation

Hard probes in AdS/CFT

Partons from AdS/CFT

e^+e^- annihilation: Jets in pQCD

- How would a high-energy jet interact in a strongly coupled plasma ?
 - How to produce jets in the first place ?
 - Guidance from perturbative QCD: $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$

Jet quenching

Conclusions

Backup

• Decay of a time-like photon: $Q^2 \equiv q^{\mu}q_{\mu} = s > 0$

e^+e^- annihilation: Jets in pQCD

- How would a high-energy jet interact in a strongly coupled plasma ?
 - How to produce jets in the first place ?
 - Guidance from perturbative QCD: $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$

The structure of the final state is determined by
 parton branching & hadronisation

```
Outline
```

Motivation

Partons and jets in pQCD

●e+e-

- Bremsstrahlung
- Jets
- 3-jet
- DIS
- F2
- Parton evolutionGluons at RHIC
- Saturation

Hard probes in AdS/CFT

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

Bremsstrahlung

 P_{7}

Gluon emission to lowest order in perturbative QCD:

Introduction

Motivation

Partons and jets in pQCD

e+e-

- Bremsstrahlung
- Jets
- 3-jet
- DIS
- F2
- Parton evolution
- Gluons at RHIC
- Saturation

Hard probes in AdS/CFT

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

- $(1-x) P_z , -k_{\perp}$ $k_z = x P_z , k_{\perp}$ $d\mathcal{P}_{\text{Brem}} \sim \alpha_s(k_{\perp}^2) N_c \frac{d^2 k_{\perp}}{k_{\perp}^2} \frac{dx}{x}$
- Phase-space enhancement for the emission of
 - collinear $(k_{\perp} \rightarrow 0)$
 - and/or low-energy $(x \rightarrow 0)$ gluons
- Parton lifetime (or 'gluon formation time') : $\Delta t \sim \frac{k_z}{k_{\perp}^2}$ Soft partons ($k_{\perp} \sim \Lambda_{\text{QCD}}$) are produced later

Jets in perturbative QCD

Introduction

Outline

Motivation

Partons and jets in pQCD

(A)

•e+e-

Bremsstrahlung

Jets

• 3-jet

• DIS

•F2

Parton evolution

Gluons at RHIC

Saturation

Hard probes in AdS/CFT

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

Few, well collimated, jets

• e^+e^- cross-section computable in perturbation theory

$$\sigma(s) = \sigma_{\text{QED}} \times \left(3\sum_{f} e_{f}^{2}\right) \left(1 + \frac{\alpha_{s}(s)}{\pi} + \mathcal{O}(\alpha_{s}^{2}(s))\right)$$

 $\sigma_{\rm QED}$: cross-section for $e^+e^- \rightarrow \mu^+\mu^-$

• Multi-jet ($n \ge 3$) events appear, but are comparatively rare

3-jet event at OPAL (CERN)

œ

Jet quenching

Conclusions

Backup

HAN SUMS (GEV) HAN PTOT 35,768 PTRANS 29,964 PLONG 15,700 CHARGE -2 TOTAL CLUSTER ENERGY 15,169 PHOTON ENERGY 4,893 NR OF PHOTONS 11

X V Z

Deep inelastic scattering

Jet quenching

Conclusions

Backup

- Physical picture: γ^* absorbed by a quark excitation with
 - transverse size $\Delta x_{\perp} \sim 1/Q$
 - and longitudinal momentum $p_z = xP$

The proton structure function

Backup

(A)

• $F_2(x, Q^2)$: 'quark distribution' = number of quarks with longitudinal momentum fraction x and transverse area $1/Q^2$

Parton evolution in pQCD

Gluons are implicitly seen in DIS, via parton evolution

Bremsstrahlung favors the emission of gluons with $x \ll 1$

(A)

Partons at RHIC

Outline	_
Motivation	_
Partons and jets in pQCD	_
• e+e-	
 Bremsstrahlung 	
• Jets	
• 3-jet	
• DIS	
• F2	
Parton evolution	
 Saturation 	
Hard probes in AdS/CFT	_
Partons from AdS/CFT	_
Jet quenching	_
Conclusions	_
Backup	

 (\mathbf{A})

- Partons are actually 'seen' (liberated) in the high energy hadron-hadron collisions
 - central rapidity: small-x partons
 - forward/backward rapidities: large-x partons

Gluon Saturation

• When occupation number $\sim 1/\alpha_s \Longrightarrow$ strong repulsion

(A)

Parton evolution

Gluons at RHIC

Saturation

Hard probes in AdS/CFT

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

• When $n \sim 1/\alpha_s$, gluons form a Bose condensate: CGC

Hard probes in a strongly-coupled plasma

Virtual photon (electromagnetic current)

Introduction

Outline

Motivation

Partons and jets in pQCD

Hard probes in AdS/CFT

Hard probes in a plasma

- CFT
- Trace anomaly
- String theory
- AdS/CFT
- Black Hole
- Holography

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

Thermal expectation value (retarded polarization tensor) :

$$\Pi_{\mu\nu}(q) \equiv \int \mathrm{d}^4 x \,\mathrm{e}^{-iq \cdot x} \,i\theta(x_0) \,\langle \left[J_{\mu}(x), J_{\nu}(0)\right] \rangle_T$$

- 'Hard probe' : large virtuality $Q^2 \equiv |q^2| \gg T^2$
 - time-like current ($q^2 > 0$) : jets
 - space–like current ($q^2 < 0$) : DIS, partons
- **Relativistic heavy quark** : $M \gg T$ and $v \simeq 1$
 - energy loss towards the medium
 - transverse momentum broadening

Introduction

Outline

● CFT

Motivation

Partons and jets in pQCD

Hard probes in AdS/CFT

Trace anomaly

String theory
 AdS/CFT
 Black Hole

Holography

Jet quenching

Conclusions

Backup

Partons from AdS/CFT

Hard probes in a plasma

Gauge theory side: CFT

- $\mathcal{N} = 4$ Supersymmetric Yang–Mills theory
 - color gauge group $SU(N_c)$
 - ◆ supersymmetry (fermions ≒ bosons)
 - Ill in the adjoint repres. !)
 - quantum conformal invariance (fixed coupling)
 - no confinement, no intrinsic scale
- Has this any relevance to QCD ??
- Perhaps better suited for QCD at finite temperature
 - deconfined phase (quark–gluon plasma)
 - quarks and gluons play rather similar roles
 - nearly conformal (small running-coupling effects)

Trace anomaly from lattice QCD

2

1

0<u>–</u> 300

400

500

500

Laboratoire de Physique Corpusculaire de Clermont-Ferrand, 20 mars 2009

Т

T [MeV]

Ξ

700

600

Ŧ

600

I

700

String theory side: AdS

• Type IIB string theory living in D = 10: $AdS_5 \times S^5$

Outline

Motivation

Partons and jets in pQCD

Hard probes in AdS/CFT

- Hard probes in a plasma
- CFT
- Trace anomaly
- String theory
- AdS/CFT
- Black Hole
- Holography

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

• $0 \le \chi < \infty$: 'radial', or '5th', coordinate

• gauge theory lives at the Minkowski boundary $\chi = 0$

The Gauge/Gravity duality (Maldacena, 1997)

- Gauge theory has two parameters:
 - coupling constant g (elementary charge)
 - number of colors N_c
 - weakly or strongly coupled depending upon $\lambda \equiv g^2 N_c$
- String theory has three parameters:
 - curvature radius of space R
 - string coupling constant g_s
 - string length l_s (typical size of string vibrations)
- Mapping of the parameters :

$$4\pi g_s \;=\; g^2 \;, \qquad (R/l_s)^4 \;=\; g^2 N_c$$

Strong 't Hooft coupling (more properly, $N_c \to \infty$) : $\lambda \equiv g^2 N_c \gg 1$ with $g^2 \ll 1 \implies$ classical (super)gravity

Introduction

Outline

Motivation

Partons and jets in pQCD

- Hard probes in AdS/CFT
- Hard probes in a plasma
- CFT
- Trace anomaly
- String theory
- AdS/CFT
- Black Hole
- Holography

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

Heating AdS₅

\square $\mathcal{N} = 4$ SYM at finite temperature \iff Black Hole in AdS_5

Outline

```
Motivation
```

Partons and jets in pQCD

Hard probes in AdS/CFT

Hard probes in a plasma

• CFT

Trace anomaly

String theory

AdS/CFT

Black Hole

Holography

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

where $f(\chi) = 1 - (\chi/\chi_0)^4$ and $\chi_0 = 1/\pi T$ = BH horizon

A black hole has entropy and thermal (Hawking) radiation

Introduction

Outline

CFT

Motivation

Partons and jets in pQCD

Hard probes in AdS/CFT

Trace anomaly

Partons from AdS/CFT

String theory

AdS/CFT
Black Hole
Holography

Jet quenching

Conclusions

Backup

Hard probes in a plasma

DIS off the Black Hole (Hatta, E.I., Mueller, 07)

• Abelian current J_{μ} in 4D \longleftrightarrow Maxwell wave A_{μ} in AdS_5 BH

• Im $\Pi_{\mu\nu} \iff$ absorption of the wave by the BH

Maxwell equations in a curved space-time

 $\partial_m \left(\sqrt{-g} g^{mn} g^{pq} F_{nq} \right) = 0$ where $F_{mn} = \partial_m A_n - \partial_n A_m$

The Holographic principle

• 'Holography': A quantum field theory in $D = 3 + 1 \iff$ A theory with gravitation in higher dimensions Introduction $\chi = 0$ Motivation Partons and jets in pQCD Q 1/0boundary Hard probes in AdS/CFT 00 Hard probes in a plasma (Minkowski) Trace anomaly 0 String theory AdS/CFT AdS radius Black Hole Holography Partons from AdS/CFT bulk Jet quenching Conclusions χ

- Rôle of the 5th dimension: a reservoir of quantum flucts.
- **Radial penetration** χ of the wave packet in $AdS_5 \iff$ transverse size L of the partonic fluctuation on the boundary

(A)

Outline

CFT

Backup

Space–like current with $Q \gg T$

Gravity calculation: Potential barrier proportional to Q

(A)

œ

Interpretation: Partonic fluctuation

- Introduction
- Outline
- Motivation
- Partons and jets in pQCD
- Hard probes in AdS/CFT
- Partons from AdS/CFT
- Space–like
- Partonic fluctuation
- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Branching
- Isotropy
- Jet quenching
- Conclusions
- Backup

- By energy-momentum conservation, a space-like current cannot decay (in the vacuum)
- It can develop a virtual partonic fluctuation

By uncertainty principle, this has a transverse size $L \sim 1/Q$

and a lifetime
$$\Delta t \sim \frac{1}{Q} \times \frac{\omega}{Q} \sim \frac{\omega}{Q^2}$$

The situation however changes at finite temperature

- The current can now decay due to the parton interactions in the plasma \implies Im $\Pi_{\mu\nu}$: a contribution to $F_2(x, Q^2)$
 - The above picture is perturbative. How does this change at strong coupling ?

Introduction

Outline

Motivation

Partons and jets in pQCD

Hard probes in AdS/CFT

Partons from AdS/CFT

Saturation momentum

Space–like
Partonic fluctuation
High energy

DIS: Large x
Small-x partons

BranchingIsotropy

Jet quenching

Conclusions

Backup

High energy: The fall

The wave falls into the BH along a massless geodesics

(A)

Saturation momentum

Introduction Outline Motivation Partons and jets in pQCD Hard probes in AdS/CFT Partons from AdS/CFT Space–like Partonic fluctuation High energy Saturation momentum DIS: Large x Small-x partons Branching Isotropy Jet quenching Conclusions Backup

- Gravitational interactions are proportional to the energy density in the wave (ω) and in the plasma (T)
- The criterion for strong interaction within the plasma

Gravitational attraction must overcome the barrier due to energy conservation

Saturation momentum

Outline Motivation

Partons and jets in pQCD

Hard probes in AdS/CFT

Partons from AdS/CFT

Space–like

Partonic fluctuation

High energy

Saturation momentum

DIS: Large x

Small-x partons

BranchingIsotropy

Jet quenching

Conclusions

Backup

Gravitational interactions are proportional to the energy density in the wave (ω) and in the plasma (T)

The criterion for strong interaction within the plasma

The partonic fluctuation must live long enough to feel the effects of the plasma

Saturation momentum

Introduction
Outline
Motivation
Partons and jets in pQCD
Hard probes in AdS/CFT
Partons from AdS/CFT
Partonic fluctuation
High energy
Saturation momentum
DIS: Large x
Small-x partons
Branching
Isotropy
Jet quenching

Conclusions

Backup

- Gravitational interactions are proportional to the energy density in the wave (ω) and in the plasma (T)
- The criterion for strong interaction within the plasma

$$Q_s \simeq (\omega T^2)^{1/3} \simeq \frac{T}{x}$$
 where $x \equiv \frac{Q^2}{2\omega T}$

 Q_s(x) plays the role of the plasma saturation momentum (borderline between weak and respectively strong scattering)
 Recall: the parton picture involves 2 variables : x and Q²

DIS at large x : No partons !

• Low energy, or large x: $x > x_s(Q) \simeq T/Q$

- Introduction
- Outline
- Motivation
- Partons and jets in pQCD
- Hard probes in AdS/CFT
- Partons from AdS/CFT
- Space–like
- Partonic fluctuation
- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Branching
- Isotropy
- Jet quenching
- Conclusions
- Backup

■ No scattering (except through tunneling) \implies $F_2(x, Q^2) \approx 0$ \implies no partons with large momentum fractions $x > x_s$

No forward/backward jets in hadron-hadron collisions !

Low x : Parton saturation

	• $x \lesssim x_s = T/Q$: strong scattering	$\implies F_2(x,Q^2) \sim x N_c^2 Q^2$
Introduction Outline	■ Parton occupation numbers of $\mathcal{O}(1)$) \implies 'saturation' (CGC)
Motivation	Physical interpretation: 'Quasi-dem	nocratic' parton branching
Partons and jets in pQCD Hard probes in AdS/CFT	Y = In 1/x ▲	
Partons from AdS/CFT Space–like Partonic fluctuation High energy Saturation momentum DIS: Large x Small-x partons Branching Isotropy Jet quenching Conclusions Backup	p p/2 p/4	Total absorption Parton Saturation $In Q_s^2(Y) = 2 Y$ No partons Quasi-elastic scattering
		In Q ²

All partons have branched down to small values of x !

Quasi-democratic parton branching

Qualitative agreement with all the results from AdS/CFT

(A)

e^+e^- at strong coupling

Time-like current in the vacuum

Motivation

Partons and jets in pQCD

Hard probes in AdS/CFT

Partons from AdS/CFT

Space–like

Partonic fluctuation

- High energy
- Saturation momentum
- DIS: Large x
- Small-x partons
- Branching

```
    Isotropy
```

Jet quenching

Conclusions

Backup

- Infrared cutoff $\Lambda \longrightarrow$ splitting continues down to $Q \sim \Lambda$
- In the COM frame → spherical distribution ⇒ no jets ! (similar conclusion by Hofman and Maldacena, 2008)
- Final state looks very different as compared to pQCD !

Heavy Quark: Energy loss

Outline

Motivation

Partons and jets in pQCD

(A)

Hard probes in AdS/CFT

Partons from AdS/CFT

Jet quenching

Energy lossBroadening

Conclusions

Backup

Virtual quanta with $Q \leq Q_s$ are absorbed by the plasma
Maximal energy loss: $\omega \sim \gamma Q_s$

$$Q_s \simeq \frac{\omega}{Q_s^2} T^2 \simeq \frac{\gamma}{Q_s} T^2 \implies Q_s^2 \sim \gamma T^2$$
$$-\frac{\mathrm{d}E}{\mathrm{d}t} \simeq \sqrt{\lambda} \frac{\omega}{(\omega/Q_s^2)} \simeq \sqrt{\lambda} Q_s^2 \simeq \sqrt{\lambda} \gamma T^2$$

Herzog, Karch, Kovtun, Kozcaz, and Yaffe; Gubser, 2006 (trailing string)

Momentum broadening $d\langle p_T^2 \rangle/dt$

Strong coupling : fluctuations in the emission process

(A)

Conclusions

- Introduction

 Outline

 Motivation
- Partons and jets in pQCD
- Hard probes in AdS/CFT
- Partons from AdS/CFT
- Jet quenching
- Conclusions
- Backup

- Hard probes & high-energy physics appears to be quite different at strong coupling as compared to QCD
 - no forward/backward particle production in HIC
 - no jets in e^+e^- annihilation
 - different mechanism for jet quenching
- Are AdS/CFT methods useless for HIC ? Not necessarily so !
 - long-range properties (hydro, thermalization, etc) might be controlled by strong coupling
 - some observables receive contributions from several scales, from soft to hard: use AdS/CFT in the soft sector
 - most likely, the coupling is moderately strong, so it useful to approach the problems from both perspectives

Jet quenching

(A)

Transverse momentum broadening

A parton ('heavy quark') scatters off the plasma constituents on its own, hard, resolution scale

$$\frac{\mathrm{d}\langle p_{\perp}^2 \rangle}{\mathrm{d}t} \equiv \hat{q} \simeq \alpha_s N_c \, \frac{xg(x,Q^2)}{N_c^2 - 1}$$

- $xg(x,Q^2)$: gluon distribution per unit volume in the medium
- Weakly-coupled QGP : incoherent sum of the gluon distributions produced by thermal quarks and gluons $xg(x,Q^2) \simeq n_q(T) xG_q + n_q(T) xG_q, \text{ with } n_{q,q}(T) \propto T^3$

- Introduction
- Outline
- Motivation
- Partons and jets in pQCD
- Hard probes in AdS/CFT
- Partons from AdS/CFT
- Jet quenching
- Conclusions
- Backup
- Jet quenching
- Momentum broadening
- RAA
- perfect fluid
- Jets
- Optical theorem
- Current correlator
- Gluons at HERA
- Screening length
- Saturation line
- String fluctuations

Nuclear modification factor

• How to measure \hat{q} ? Compare AA collisions at RHIC to pp

$$R_{AA}(p_{\perp}) \equiv \frac{Yield(A+A)}{Yield(p+p) \times A^2}$$

RHIC data seem to prefer $\hat{q} \simeq 10 \text{ GeV}^2/\text{fm}$, which is too large to be accounted for by weakly–coupled QGP (??)

(A)

Introduction

Outline

Motivation

The 'perfect fluid'

Uncertainty principle applied to viscosity:

Introduction

Outline

Motivation

Partons and jets in pQCD

Hard probes in AdS/CFT

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

- Jet quenching
- Momentum broadening
- RAA
- perfect fluid
- Jets
- Optical theorem
- Current correlator
- Gluons at HERA
- Screening length
- Saturation line
- String fluctuations

 $\frac{\eta}{S} \sim m v \lambda_f \sim \hbar \frac{\text{mean free path}}{\text{de Broglie wavelength}} \gtrsim \hbar$

 $\eta \sim \rho v \lambda_f, \qquad S \sim n \sim \frac{\rho}{m}$

- Weakly interacting systems have $\eta/S \gg \hbar$
- Strongly coupled $\mathcal{N} = 4$ SYM plasma

$$\frac{\eta}{S} \to \frac{\hbar}{4\pi}$$
 when $\lambda \to \infty$

(Policastro, Son, and Starinets, 2001)

- This bound is believed to be universal : $\eta/S \ge \hbar/4\pi$
- The data at RHIC are consistent with the lower limit being actually reached : 'sQGP'

Jets

Introduction

Outline

Motivation

Partons and jets in pQCD

 $\Gamma \Delta \Gamma$

Hard probes in AdS/CFT

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

Jet quenching

Momentum broadening

RAA

perfect fluid

Jets

- Optical theorem
- Current correlator
- Gluons at HERA
- Screening length
- Saturation line
- String fluctuations

• 'Multi-jet event' : large emission angle & $x \sim \mathcal{O}(1)$

$$k_{\perp} \sim k \sim \sqrt{s} \implies \mathcal{P}_{\text{Brem}} \sim \alpha_s(s) \ll 1$$

small probability for emitting an extra gluon jet !

'Intra-jet activity' : collinear and/or soft gluons

$$\Lambda_{\rm QCD} \ll k_{\perp} \ll k \ll \sqrt{s} \implies \mathcal{P}_{\rm Brem} \sim \alpha_s \ln^2 \frac{\sqrt{s}}{\Lambda_{\rm QCD}} \sim \mathcal{O}(1)$$

modifies particle multiplicity but not the number of jets

Optical theorem

Total cross—section given by the optical theorem

Outline

Motivation

Partons and jets in pQCD

 (\Box)

Hard probes in AdS/CFT

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

Jet quenching

Momentum broadening

RAA

• perfect fluid

Jets

Optical theorem

Current correlator

Gluons at HERA

- Screening length
- Saturation line
- String fluctuations

The quark loop: The vacuum polarization tensor $\Pi_{\mu\nu}$ for a time–like photon (here, evaluated at one–loop order)

This can be generalized to all-orders

Current–current correlator

• $\Pi_{\mu\nu}$ = current–current correlator to all orders in QCD

$$\Pi_{\mu\nu}(q) \equiv i \int d^4x \, e^{-iq \cdot x} \langle 0 | T \{ J_{\mu}(x) J_{\nu}(0) \} | 0$$

 $J^{\mu} = \sum_{f} e_{f} \, \bar{q}_{f} \, \gamma^{\mu} \, q_{f} \, : \, \text{quark electromagnetic current}$

■ Valid to leading order in α_{em} but all orders in α_s

Introduction

Motivation

Partons and jets in pQCD

 \bigcap

Hard probes in AdS/CFT

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

Jet quenching

Momentum broadening

RAA

• perfect fluid

Jets

Optical theorem

Current correlator

Gluons at HERA

- Screening length
- Saturation line
- String fluctuations

Gluons at HERA

 $xg(x,Q^2) = #$ of gluons with transverse area $\sim 1/Q^2$ and $k_z = xP$

Screening length

- Introduction Outline
- Motivation
- Partons and jets in pQCD
- Hard probes in AdS/CFT
- Partons from AdS/CFT
- Jet quenching
- Conclusions
- Backup
- Jet quenching
- Momentum broadening
- RAA
- perfect fluid
- Jets
- Optical theorem
- Current correlator
- Gluons at HERA
- Screening length
- Saturation line
- String fluctuations

A small color dipole ('meson') with transverse size $L \ll 1/Q_s$ propagates through the strongly–coupled plasma with almost no interactions !

Larger dipoles with $L \gtrsim 1/Q_s$ cannot survive in the plasma

$$L_s \sim \frac{1}{Q_s} \quad \& \quad \gamma \sim \frac{\omega}{Q} \implies L_s \sim \frac{1}{\sqrt{\gamma}T} \ll \frac{1}{T}$$

The dipole lifetime is short on natural time scales:

$$\Delta t \sim \frac{\omega}{Q_s^2} \sim \frac{\sqrt{\gamma}}{T} \ll \frac{\gamma}{T}$$

Momentum broadening

Fluctuations in the medium-induced emission process

Introduction

Outline

Motivation

Partons and jets in pQCD

Hard probes in AdS/CFT

Partons from AdS/CFT

Jet quenching

Conclusions

Backup

Jet quenching

Momentum broadening

RAA

perfect fluid

Jets

• Optical theorem

Current correlator

Gluons at HERA

- Screening length
- Saturation line

String fluctuations

 $\frac{\mathrm{d}\langle p_L^2 \rangle}{\mathrm{d}t} \sim \sqrt{\lambda} \frac{\omega^2}{(\omega/Q_s^2)} \sim \sqrt{\lambda} \sqrt{\gamma} \gamma^2 T^3$

Casalderrey-Solana, Teaney; Gubser, 2006 (from trailing string)

\mathbb{C}

Saturation line: weak vs. strong coupling

- Momentum broadening
- RAA
- perfect fluid
- Jets
- Optical theorem
- Current correlator
- Gluons at HERA
- Screening length
- Saturation line
- String fluctuations

Saturation exponent : $Q_s^2(x) \propto 1/x^{\lambda_s} \equiv \mathrm{e}^{\lambda_s Y}$

- weak coupling (LO pQCD): $\lambda_s \approx 0.12 g^2 N_c$
- phenomenology & NLO pQCD: $\lambda_s \approx 0.2 \div 0.3$
- strong coupling (plasma): $\lambda_s = 2$ (graviton)

Stochastic trailing string

How are quantum-mechanical (as opposed to thermal) fluctuations encoded in AdS/CFT ?

- Saturation line
- String fluctuations

• World–sheet horizon at $\chi_s = 1/Q_s \sim 1/(\sqrt{\gamma}T) \ll 1/T$

Hawking radiation (= thermal flucts.) plays no role (in contrast to a static string; cf. talk by Rangamani)

Stochastic trailing string

Fluctuations on top of the world–sheet horizon χ_s \implies noise term on the 'stretched horizon' at $\chi = \chi_s + \epsilon$ Introduction Outline ()Motivation Partons and jets in pQCD V $\sqrt{1/2T}$ Hard probes in AdS/CFT Partons from AdS/CFT Jet quenching Conclusions Backup Jet quenching $\frac{1}{T}$ Momentum broadening RAA • perfect fluid Jets Optical theorem χ Current correlator Gluons at HERA Screening length

- Saturation line
- String fluctuations

 $\cap \square$

Langevin equation for the upper part of the string & the heavy quark (G. Giecold, E.I., A. Mueller, 09)

Physics: Fluctuations in the parton cascades