Advanced Image Cleaning LAPP/DAp Meeting

Jérémie Decock

Tino MICHAEL, Thierry STOLARCZYK, Karl KOSACK, Fabio ACERO, Kai BRUEGGE, David LANDRIU

CEA Saclay – Irfu/DAp

January 15, 2018

Subject: image cleaning

Examples

SST-1M

LSTCam

ASTRI

FlashCam

NectarCam

Methods currently used for gamma rays images cleaning (Tailcut)

A very simple cleaning procedure (HESS setup):

- Keep pixels above a given threshold (10 PE)
- Keep some neighbors of these selected pixels:

those above a second (lower) threshold (5 PE)

Issue with faint showers: Information loss

PE (truth)

After Tailcut cleaning

Basic idea to go beyond

- Tailcut method: thresholds in the main space
- Better idea: thresholds in a different space where signal and noise can be easily separated
 - Wavelet transform
 - Cosmostat tools (iSAP/Sparse2D) (http://www.cosmostat.org/software/isap/)

Cleaning procedure: general idea with Fourier Transform

- Input signal is converted to a weighted sum of sin and cos at different frequencies
- Threshold is applied on these weights to remove some frequencies in the input signal (e.g. high pass filter, low pass filter, ...)

Cleaning procedure: general idea with Wavelet Transform

- Input signal is converted to a weighted sum of these wavelet functions at different scales (dilate factor) and positions (translate factor)
- Threshold is applied on these weights to remove locally (in space or time) some frequencies (or scales) in the input signal

Wavelet transform on images

Wavelet transform for filtering

Wavelet filtering

Orig.

Wavelet filtering

DOES IT WORK WELL ON LARGE STATISTICS ?

Experimental setting

Pointing source (20° north)

- SSTs
 - ASTRI -> Inaf mini array + Konrad Bernloehr's mini array
 - GCT -> Konrad Bernloehr's mini array
 - SST-1M -> Konrad's mini array
- MSTs
 - Flashcam -> Inaf mini array + Prod3b North
 - Nectarcam -> Prod3b North
- LST
 - Dragoncam -> Prod3b North

Many thanks to Konrad Bernloehr, Gernot Maier and the Inaf team for their help !

Evaluation procedure

" $\Delta \psi$ " : an estimator of performance at the level of images

Finding the best thresholds

- Use a global optimizer
 Evolutionary Algorithms
- Return the thresholds that minimize mean(Δψ)

Shower axis reconstruction LSTCam (gamma) HESS setup

WT-K-k-C1-m3-n4-s2-4.5-3.5-3 / Tailcut-5-10 [Gamma]

Shower axis reconstruction LSTCam (gamma) optimized Tailcut

LSTCam [Gamma]

Shower axis reconstruction SST-1M (gamma) optimized Tailcut

Progress in events reconstruction (Tino Michael)

• What about stereoscopy ?

• What about the actual sensitivity gain ?

Results from Full Reconstruction

Improvements to shower reconstruction direction (angle between reconstructed and simulated direction)

angular resolution

Next steps

- Improve the filtering adding the time dimension
- Internal note

https://github.com/jdhp-sap/sap-cta-data-pipeline.git

THANK YOU