
DPPS & OES
Data Processing and Observation Execution

Karl Kosack

1

2

3

R1

DL0 DL3+

3

R1

DL0 DL3+

3

R1

DL0 DL3+

Karl KosackPIPELINES

Operations Support

Internal Data-related systems

4

Observation
Execution System (OES)

Data Processing
and Preservation System (DPPS)

Scheduling
Array Control
Data Handling

level A analysis
Monitoring
Operator GUI
…

Archive
Pipeline

Level B+C analysis
Computing Mgmt.
Simulations
Data Quality
Experts Gateway
Data Transfer

Master Configuration Database

1Gb/s

Karl KosackCTA Data processing

Data Levels: amount of processing

5

2. Data Naming Hierarchy

which may optionally contain sub-elements. Data names are case insensitive. Data names need not be
specified to the lowest level of the hiererchy.

These common data names may be used to:

• refer to data streams in architectural diagrams without ambiguity

• define interfaces and data models

• name data structures and APIs used in software like the pipeline or ACTL/DAQ

• identify tables and other elements inside output data files or databases

2 Data Naming Hierarchy

The following describes the hierarchical breakdown of data types within CTA. For each level in the
hierarchy, we provide a name, some guidelines of what data types it applies to, and if applicable the
suggested primary key or index used to identify repeated data within the same level is shown with
(indexed-by: key name). The indices shown here are used as examples only of the most common data
relationships and may not cover every use case; for further detail on data relationships, consult the full
CTA data model.

2.1 Data Processing Levels

The top level of the hierarchy is the data level, which represents the amount of data processing that has
been applied to the data (data at lower levels are more “raw”). The dominant data within each level is
also mentioned (usually EVT data, but MON and SVC data can also represent a significant volume). A
short name for each is also given in parentheses. Data levels R0-R1 are at the level of the hardware and
data acquisition software and are not intended for long-term storage, while level DL0-DL5 and intended
for archival storage.

Generally, the volume of data at a particular data level is equal to or smaller than that of the previous
level.

Data products in data levels are indexed generally by a timestamp (if unrelated to observations), obs id

(for observation-related data) or a higher-level grouping like a target name (for high-level combined data
products).

R0 (raw low-level) camera data transmitted from telescope to central servers. R0 content and format is
internal to each camera and is specified and coordinated between individual camera teams.

R1 (raw common) data output by an individual camera functional unit to the camera DAQ functional
unit. This is the first level of data seen by the ACTL system and is therefore as common as pos-
sible between all cameras/hardware. Exceptionally, some R1 data may be stored for engineering
purposes.

DL0 (raw archived) all archival data from the data acquisition hardware/software. This is the first level of
data that are stored in the bulk archive. This includes both camera event data and technical data
from other subsystems, such as non-camera devices or software.

CTA Construction Project
Data Model Definitions

Page 4 of 10 SYS-QA/160517 | v.1.1 | 02 June 2017

2. Data Naming Hierarchy 2.2 Data Multiplicity

DL1 (processed) processed DL0 data that may still include some TEL data and parameters derived
from them. For example this includes calibrated image charge, Hillas parameters, and a usable
telescope pattern. This is only optionally stored in the archive.

DL2 (reconstructed) reconstructed shower parameters such as energy, direction, particle ID, and related
signal discrimination parameters. At this point, no TEL information is stored. For each event this
information may be repeated for multiple reconstruction and discrimination methods. This is only
optionally stored in the archive. At this point, telescope-wise info is generally dropped.

DL3 (reduced) Sets of selected (e.g. gamma-ray candidates, electron candidates, selected hadron
candidates, etc.) events with a single final set of reconstruction and discrimination parameters,
along with associated instrumental response characterizations and any technical data needed for
science analysis.

DL4 (science) binned data products like spectra, sky maps, or light curves, along with associated data
(source models, fit results, etc).

DL5 (high-level) high-level or “legacy” observatory data, such as CTA survey sky maps or the CTA
source catalog.

2.2 Data Multiplicity

The data multiplicity identifier allows one to see how a particular data item is repeated.

OBS Data that pertains to the CTA observatory in general, independent of site or array.

ARR Data that pertains to an entire array/site. Examples include data from a common weather station,
databases related to the overall array layout, or calibrations that affect the full array or array site.
(indexed-by: array id)

SUB Data that may be repeated for each sub-array. Examples include the central sub-array trig-
ger1 data, reconstructed shower parameters, instrumental response functions, etc. (indexed-by:

subarray id)

TEL Data that may be repeated for each telescope. Examples include Cherenkov images, parameters,
etc. These are generally indexed by a telescope id number or telescope type. (indexed-by: tel id)

or (indexed-by: tel type)

2.3 Data Classification

The data classification further separates data by how it is used and updated. In each class, the rate
of data that is written and/or it’s validity range is different. This may imply or help to separate different
storage mechanisms for each class.

EVT (event) contains data that changes for every triggered event (e.g. a Cherenkov shower, calibration
trigger, etc.), with typically a high rate, which may be more than a kilohertz. For this reason, EVT
data may need special storage considerations. Examples include shower images/cubes, shower
parameters, calibration coefficients that are measured event-wise, and trigger information. This is
typically the highest volume data stream. (indexed-by: event id)

MON (monitoring) contains data that are used to monitor the status or quality of hardware, algorithms,
or other data, including slow-control information. These typically update at a periodic rate during
the operation of the array, or during on- or off-line data processing, at a rate typically much slower
than EVT data and faster than the length of a typical observation block. Examples would be slow-
control information like tracking positions, weather monitoring data, or the status of a particular
hardware or software component. (indexed-by: timestamp)

1also known as SWAT (SoftWare Array Trigger)

CTA Construction Project
Data Model Definitions

Page 5 of 10 SYS-QA/160517 | v.1.1 | 02 June 2017

MCs are somewhere
here right now

Reconstructed Events
(many reconstructions

and parameters, no
more telescopes)

Science Data:
Classified Events

(final reconstruction),
IRFs

Pipeline starts here
Will need to

eventually produce
data here to be

compatible with "real"
CTA data

Karl KosackPIPELINES

Data Naming

6

DL0.TEL.EVT:
all eventwise
data from
cameras

DL0.SUB.EVT:
central trigger
data

DL0.TEL.MON:
telescope
monitoring data

DL0.TEL.SVC:
telescope
configuration/
calibration
tables

For example:

Karl KosackPIPELINES

DL0.*.EVT Data Format

Document under prep:

‣define the minimal R1.*.EVT schema

‣define the maximal DL0.*.EVT schema  
 (limited by link)

‣call for data format prototypes

‣define evaluation and down-selection procedure

Associated data volume simulator notebook

7

2. Data Schema 2.4 DL0.TEL.EVT schema

TODO(question:trigger expert): Do we need a central trigger time here? Does it mean anything? Maybe
a start and end of the coincidence window or a mean time?

TODO(question): Should include an alternate that uses variable-length array for the trigger (e.g. a
trig list) in the DL0 version?

TODO(question): Can the SWAT tell the difference between the telescopes that triggered vs those that
actually read out? (e.g not busy)

2.4 DL0.TEL.EVT schema

The DL0.TEL.EVT schema are similar to R1.TEL.EVT described in §2.2, but with the provision that the
image data are time-integrated, and a subset of Ktr pixels per event have time traces retained after
DVR. The fields shown here are the only data written to disk, and any extra camera-specific fields may
be ignored. Most extra camera-specific info should be only recorded as DL0.TEL.MON data unless
absolutely necessary, to avoid increasing the data size3

The following table shows the data structure to which a DL0 data file should be easily translatable
in memory. The chosen data format can of source apply additional transformations to the data for
efficiency. This structure is defined to achieve two main goals: efficient storage of all data such that it
can be transmitted off-site within the required time, and efficient memory access, allowing support for
CPU features that require contiguous memory. The field sizes were chosen based on the off-site link
constrains using the model developed in [5]

Name Type Shape Unit Description
event id uint64 (1) - The event ID assigned by the SWAT (primary

key)
trig time s uint32 (1) s (TAI) telescope trigger time, seconds since refer-

ence
trig time qns uint32 (1) 0.25 ns telescope trigger time, quarter-nanoseconds

since trig time s
trig type uint8 (1) - trigger type identifier, encoding the trigger

class and sub-class
image int16 (Npix) DC the time-integrated image

pix status uint8 (Npix) - See definition below (§2.4)

trace int16 (Ktr, Nsamp) DC traces for all pixels that have the DVR flag (bit
2) high in pix status

Notes:

(see also the notes on R1.TEL.EVT in §2.2)

• Npix and Nsamp are fixed values for a given camera, trigger type, and observation (e.g. no zero-
suppression at the image level, only traces). Therefore all but the trace fields are fixed-length and
can therefore be stored in a tabular format. The trace field length Ktr is variable between events,
so may need special storage considerations if all fields are stored congiguously.

• It is left up to the developers of the DL0 data format to decide if the event data are stored in
such a way that allows efficient column-wise access and random event access. Neither of which
are required, but some operations like camera calibration may be sped up if events column-wise
access is possible (for example making a histogram of the values of a set of a subset of pixels over
all events).

3Nevertheless, for debugging or calibration purposeless, specialized observation modes may be defined where the extra
camera-specific per-event data are written, as long at those modes are used for only a small fraction of data taken.

CTA Construction Project
R1 & DL0 Interfaces

Page 8 of 19 xxx/xxxx | v. 0.1 | 12 January 2018

PRELIMINARY

Note that this is
about the limit of

what we can
store per event

and still transfer
data off site!

Karl KosackPIPELINES

Some comparison criteria:

8

B. Test Results B.2 Prototype Details

Table B.1 – Criteria for evaluating DL0 Data format prototypes: Maintenance and Longevity

Criterion EventIO/HESSIO ZFITS pRUN HDF5

Format is open standard?

Documentation: compete
API docs?

EventIO pdf, HESSIO
pdf

Is the format documented
sufficiently to
re-implement a reader if
the original API is lost?

When Created? 1992 (EventIO) 2001
(HESSIO)

Standard defined by
whom?

Konrad Bernloehr

Used outside of CTA? HESS MC, HEGRA,
sim telarray

FACT, CTA DAQ proto wide range of science
and industry

Currently maintained-by? Konrad Bernlöhr
(MPI-K)

Long-term maintenance
plan?

Multiple
implementations?

No

Manpower needed to to
change computing
environment/compiler

Dependencies

Table B.2 – Criteria for evaluating DL0 Data format prototypes: Data and Schema

Criterion EventIO/HESSIO ZFITS pRUN HDF5

Schema defined how? header + code protobuf file custom text file via API, DDL, XML

Self-descriptive? No partial? no yes

Supports required data
types

Yes

Can store per-item
units/scales

no yes yes

table-like API No, but can be emu-
lated

yes yes yes

Support and performance
of variable-length fields

Yes, same as fixed-
length

yes, slower than fixed
(dep on chunk size)

Supports
multi-dimensional array
types

yes yes

Supports nested data
types

yes no yes yes

Supports rich
meta-data/headers

yes yes (80 char limit) yes

Supports arbitrary
meta-data (no schema
needed)

no yes no yes

Can add/change
meta-data in existing file?

no yes yes

Multiple datasets in a
single file?

yes, interleaved yes, flat list of HDUs yes, hierarchical
datasets

Supports schema
evolution

yes manually yes manually

Manpower needed to
update data model

CTA Construction Project
R1 & DL0 Interfaces

Page 14 of 19 xxx/xxxx | v. 0.1 | 12 January 2018

B. Test Results B.2 Prototype Details

Table B.1 – Criteria for evaluating DL0 Data format prototypes: Maintenance and Longevity

Criterion EventIO/HESSIO ZFITS pRUN HDF5

Format is open standard?

Documentation: compete
API docs?

EventIO pdf, HESSIO
pdf

Is the format documented
sufficiently to
re-implement a reader if
the original API is lost?

When Created? 1992 (EventIO) 2001
(HESSIO)

Standard defined by
whom?

Konrad Bernloehr

Used outside of CTA? HESS MC, HEGRA,
sim telarray

FACT, CTA DAQ proto wide range of science
and industry

Currently maintained-by? Konrad Bernlöhr
(MPI-K)

Long-term maintenance
plan?

Multiple
implementations?

No

Manpower needed to to
change computing
environment/compiler

Dependencies

Table B.2 – Criteria for evaluating DL0 Data format prototypes: Data and Schema

Criterion EventIO/HESSIO ZFITS pRUN HDF5

Schema defined how? header + code protobuf file custom text file via API, DDL, XML

Self-descriptive? No partial? no yes

Supports required data
types

Yes

Can store per-item
units/scales

no yes yes

table-like API No, but can be emu-
lated

yes yes yes

Support and performance
of variable-length fields

Yes, same as fixed-
length

yes, slower than fixed
(dep on chunk size)

Supports
multi-dimensional array
types

yes yes

Supports nested data
types

yes no yes yes

Supports rich
meta-data/headers

yes yes (80 char limit) yes

Supports arbitrary
meta-data (no schema
needed)

no yes no yes

Can add/change
meta-data in existing file?

no yes yes

Multiple datasets in a
single file?

yes, interleaved yes, flat list of HDUs yes, hierarchical
datasets

Supports schema
evolution

yes manually yes manually

Manpower needed to
update data model

CTA Construction Project
R1 & DL0 Interfaces

Page 14 of 19 xxx/xxxx | v. 0.1 | 12 January 2018

B. Test Results B.2 Prototype Details

Table B.3 – Criteria for evaluating DL0 Data format prototypes: Technical and architecture

Criterion EventIO/HESSIO ZFITS pRUN HDF5

Machine architecture
independence?

Yes

Multi-compiler support yes

Multi-platform support Linux, MacOS

API Language bindings C, Python C++, Python C++, Python C/C++, Python, For-
tran, Java

Detection of data
corruption

checksum internal checksum
per data-set

Recovery from data
corruption

no

Endianness support big + little

Efficient row (event-wise)
data access?

yes

Efficient column (one
data item for all events)
access?

no

Parallel read access? no

Parallel write access? no

Takes advantage of data
pre-fetching?

no

Data are loaded
contiguously in memory?

Cache friendlieness?

Support for vectorization
(SIMD)?

Requires all events in file
to be in memory?

Table B.4 – Criteria for evaluating DL0 Data format prototypes: Performance with no data volume reduction

Criterion EventIO/HESSIO ZFITS pRUN HDF5

Column-wise chunk size
(N-rows)

Write performance,
Row-Wise (MB/s)

Write performance,
Column-Wise (MB/s)

Read performance,
Row-wise (MB/s)

Read performance,
Column-wise (MB/s)

Compression: internal or
external?

external

Compression: ratio
achieved?

Compression:
recommended method?

Peak Memory Usage:

CTA Construction Project
R1 & DL0 Interfaces

Page 15 of 19 xxx/xxxx | v. 0.1 | 12 January 2018

B. Test Results B.2 Prototype Details

Table B.3 – Criteria for evaluating DL0 Data format prototypes: Technical and architecture

Criterion EventIO/HESSIO ZFITS pRUN HDF5

Machine architecture
independence?

Yes

Multi-compiler support yes

Multi-platform support Linux, MacOS

API Language bindings C, Python C++, Python C++, Python C/C++, Python, For-
tran, Java

Detection of data
corruption

checksum internal checksum
per data-set

Recovery from data
corruption

no

Endianness support big + little

Efficient row (event-wise)
data access?

yes

Efficient column (one
data item for all events)
access?

no

Parallel read access? no

Parallel write access? no

Takes advantage of data
pre-fetching?

no

Data are loaded
contiguously in memory?

Cache friendlieness?

Support for vectorization
(SIMD)?

Requires all events in file
to be in memory?

Table B.4 – Criteria for evaluating DL0 Data format prototypes: Performance with no data volume reduction

Criterion EventIO/HESSIO ZFITS pRUN HDF5

Column-wise chunk size
(N-rows)

Write performance,
Row-Wise (MB/s)

Write performance,
Column-Wise (MB/s)

Read performance,
Row-wise (MB/s)

Read performance,
Column-wise (MB/s)

Compression: internal or
external?

external

Compression: ratio
achieved?

Compression:
recommended method?

Peak Memory Usage:

CTA Construction Project
R1 & DL0 Interfaces

Page 15 of 19 xxx/xxxx | v. 0.1 | 12 January 2018

Maintenence/
longevity

Data and Schema
flexibility

Technical and
Architecture Performance

Karl KosackPIPELINES

ctapipe status

9

Karl KosackPIPELINES

General Status
Trace Integration:
‣Support so far 4 methods (NeighborPeakIntegrator as default)

‣Missing MARS/EventDisplay style GradientPredictionIntegrator: to be implemented (see #

Image Processing:
‣Hillas (code recently cleaned up, sped up, but still needs some refactoring)

‣Tail Cuts: now supports standard + MARS definition, support for optimized thresholds per
camera

‣Wavelet Cleaning: 2D method working and ready to be merged into standard pipeline
(waiting for better implementation of backend code). 3D method to be done.

Reconstruction:
‣Plane-Intersection: implemented and working

‣ImPACT template model: implemented and working, but needs template generation for full
production

General Framework:
‣Mostly ok, but still a lot of (re)design needed. Small dev meeting / telecon soon. (restarting

normal telecons)

10

Karl KosackPIPELINES

Upcoming Refactorings

IO sources (need so far to support 4+ file formats)
‣EventFileReader and x_event_source() being merged into common interface (see

PR#613)

‣ future: support both single-event, and table of events, for different use cases

Merging in of Pipeline steering scripts and related classes
‣EventPreparer (helper to produce DL1 outputs)

‣scripts for:

-reconstruction,
-training of energy and classification
-cut optimization + IRF production + sensitivity and diagnostics

Unification of DL2 outputs
‣currently "proprietary" HDF5 tables (Tino), just need some work to make compliant

with the CTA standards (add event_id, rename some columns, etc.)

More to come, as CTA standards and Architecture are developed…

11

