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Laser Wakefield Electron Accelere

Une explication simpliste
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Laser Wakefield Electron Accel
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Non linear regime : the bubble
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Ponderomotive force
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Diffraction and relativistic self focusing

Diffraction in vacuum :

Optical indice in a plasma :
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LWFA in a plot
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Physical processes at work in sub-30 fs, PW laser pulse-driven plasma
accelerators, Beck et. al., NMIA, 2014.
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Numerical requirements

A. Beck

@ Describe wave-particle interactions accurately at small time and
space scales over a large number of oscillations.

@ Evaluate local relativistic optical index.

@ Solve Maxwell equations.

@ Account for the collective behaviour of the plasma at large scales.
@ 3D in space and in momentum.
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What is a super computer ?
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What is a super computer ?
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1) Many core
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@ Increased performances
@ Reasonable energy budget

The Evolution of Muti-core ang
Many-core Computing
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2) GPGPU

NVIDIA & AMD :General Purpose Gr.

How GPU Acceleration Works

Application Code

Compute-Intensive Functions
=

Rest of Sequential
CPU Code

@ Most energy efficient architecture today
@ Difficult to adress :

o Libraries : Cuda, OpenCl.
o Directives programming : OpenMP 4 ou openACC.
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3) Vectorization Q%

Compiler Case Study

Introducing SIMD: Single
Instruction, Multiple Data

e Scalar processing » SIMD processing
traditional mode with SSE / SSE2
one operation produces one operation produces

one result multiple results

Copyright © 20

@ Excellent potential speed up, very good power budget.
@ Heavy constraints on data structure and algorithm.
@ Difficult to use at its full extent in a PIC code.
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Why am | concerne Samn

A. Beck

As a developer

@ Expose parallelism. Massive parallelization is key.
© Focus on the algorithm and data structures. Not on architectures.

© Reduce data movement : Computation is becoming cheaper, loads and
stores not so much.

© Be aware of the increasing gap between peak power and effective
performances. The race to exascale is becoming a race to exaflops.

As a user

@ Disclaimer. Parallelization is performed by experts.

TSNS
DONT TRY THIS AT HOME!

Y 0 4 44

LWFA simulation

17/48



«A collaborative, open-source, multi-purpose PIC code
for the next generation of super-computers»

www.maisondelasimulation.fr /smilei
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The Particle-In-Cell (PIC) method is a central tool for simulation
over a wide range of physics studies

Cosmology

Accelerator physics

source: K. Heitmann, Argonne National Lab source:WARP , Berkeley Lab

Relativistic astrophysics

Laser plasma interaction

10
5%
5

source: F. Fiuza, Livermore National Lab Ex/(mecwole) source: L. Fedeli, Uni. Pisa

+ Conceptually simple

* Efficiently implemented on (massively) parallel super-computers
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A PIC code is a solver

fs(x@)dxdv is the probability to find a particle of species s in the
phase space point (x,v) around dxdv.

Vlasov equation .
No collisions

Ofs B vx B 0f,
ot +v~ax+qs/ms(E+ c )a_v
Maxwell's equations Moments equations
‘E=14 <
ngzoﬂp p=2qs/fsdv
VxE=-128 o
VXB=§5—'§6+4§J J:qu/vfsdv

Difficulty : Equations are coupled !
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Explicit PIC code principle
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Pusher

Solve Vlasov

KSolve Maxwell /
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Domain decomposition

PIC code are ‘easily’ parallelized using domain decomposition

Simulation of laser wakefield (
acceleration of electrons My Super-Computer
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Domain decomposition : MPI
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Domain decomposition : MPI

Compute node  Compute node Compute node Compute node
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Domain decomposition : MPI + openMP in

PIC code are ‘easily’ parallelized using domain decomposition+ Patch

Simulation of laser wakefield
acceleration of electrons

ce

computing element

Message
Passing
Interface

<=]» Mem. copy,
Using Open
Dynamic scheduler

k Shared memor; j
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Domain synchronization

sub-domain boundaries

-1,3| i,j |i+1)i

-1

Processor 1 Processor 1

-1,3| 1,3 fi+1}j

Ghost Cells exchanged
Ghost Cells between processors

\ at every update

ifi+1

14| 13 fi+1]s i+
i1 1,4 1 fi+1)i
-1

Processor 2
Processor 2

@ If processors have a shared memory ==> OpenMP

@ If processors have ditributed memory ==> MPI

@ Same logic for particles
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The Yee Lattice and discrete maxwell eq

Discrete Maxwell equations for finite difference time domain (FDTD) scheme :
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Yee latice convienently allows first order finite difference scheme to produce
order 2 accuracy : O(Ax?).
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Numerical dispersion

A. Beck

A plane wave is propagated in vacuum via the discrete equations. We obtain
information on stability and accuracy.

Theory

C=0.8
C=0.5
C=0.1

Numerical dispersion in vacuum.
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Difference between numerical and
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Domain decomposition : MPI + openMP in

PIC code are ‘easily’ parallelized using domain decomposition

Simulation of laser wakefield (
acceleration of electrons My Super-Computer
el
computing element
= MP
Message
Passing
Interface
<=1 Mem. copy
Using OpenMP
x [pm)] Dynamic scheduler
Domain decomp. is not enough!!!
- workload not optimally shared
not adapted to new architectures! \ Shared memory )
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openMP dynamic scheduler benefits

MPI x OpenMP
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OpenMP dynamic scheduler is able to smooth the load but only at the node
level.
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Patched base data structure

960 cells

32 patches

5 MPI regions
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Hilbert ordering

We need a policy to assign patches to MPI processes. To do so, patches are
organized along a one dimensional space-filling curve.

@ Continuous curve which goes across all patches.
© Each patch is visited only once.
© Two consecutive patches are neighbours.

© In addition we want compactness !
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With dynamic load balancing activated

MPI x OpenMP
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Yellow and red are copied from previous figure.
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Dynamic evolution of MPI domain
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Dynamic evolution of MPI domains
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Multi-stages acceleration

Laser €nvelope

=

Second LFWA stage

electrons
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First LFWA stage
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Enveloppe Model

F. Massimo

Hypothése:

“ = . Laser Enveloppe A
A(x,t) = Re e”’“u@*d)]

Enveloppe Complexe
Equation d’Enveloppe:

V2A +2i (3114 + Bﬂi) — (')tzji :EA Laser “Standard” A

2
x(x) = ZE: g:’ z,: % S(x— %) Susceptibilité du plasma

Equations du Mouvement des Macroparticules:
%, U

P f Force Pondéromotrice

du, — u, -
r T (EP + z x B,
Force de Lorentz
P. Mora and T. M. Antonsen Jr, Physics of Plasmas 4, 217 (1997)

B. Quesnel and P. Mora, Physics Review E 58, 3719 (1998)
S. Sinigardi et al., ALaDyn v2017.1 zenodo (2017)

1 _
— r? _V(A 2) Ts = (s/Ms
7 (s /
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Enveloppe Model

F. Massimo
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SMILEI 3D, Laser “Standard” 10.6 heures, 256 noeuds
mm
SMILEI 3D, Laser “Enveloppe” 10 minutes, 50 noeuds

Ex (mewoc/e)

x (c/wo)
Lx = 400 c/wo
Ly =L, = 640 c/wo
Particules par cellule = 8

ne/me
SMILEI, oo
0.002
0.000
200 250 300
X (c/e0)

T-processus Laser “Standard” 320 !

T-processus Laser “Enveloppe”
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Azimuthal Fourier Decomposition
I. Zemzemi

F(x,r,0) = Fo+ io R (F‘m(x, r)) cos(mf) + S (F”m(x, r)) sin(mo)

We can then rewrite Maxwell equations for each Fourier modes :

OB im =,  OET
at T E ox
Since the modes are independant, the simulation boils down to m 2D

simulations.
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Grand Challenge GENCI

A. Beck

@ New French super computer Irene : 79 488 cores and computational
power of 6,86 Pflop/s.

@ Preliminary access was granted to 20 applications and Smilei won this
“Grand Challenge” : 7 million hours.

@ Smilei ran and showed exceptional efficiency on 43200 cores.

@ Perfect opportunity to run a partial second stage simulation to validate
the enveloppe model on a long distance propagation.
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Pour utilisateurs, futurs développeurs:

sm ;' e i ) Training Workshop!

http://www.maisondelasimulation.fr /smilei/

Prochaine Edition: Fevrier/Mars 2019
!.,_77_“ M SSSE S o SR X 1N

Smilei Training workshop 2017,

Maison de la Simulation
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