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Laser Wakefield Electron Acceleration
Une explication simpliste
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Non linear regime : the bubble
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Ponderomotive force

Fp =
e2

4ω2m
∇E2
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Diffraction and relativistic self focusing

Diffraction in vacuum :

Optical indice in a plasma :
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√
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p
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LWFA in a plot

Physical processes at work in sub-30 fs, PW laser pulse-driven plasma
accelerators, Beck et. al., NMIA, 2014.
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Numerical requirements

Describe wave-particle interactions accurately at small time and
space scales over a large number of oscillations.

Evaluate local relativistic optical index.

Solve Maxwell equations.

Account for the collective behaviour of the plasma at large scales.

3D in space and in momentum.

A. Beck LWFA simulation 9 / 48



Structure

1 Laser Wakefield Acceleration

2 The HPC environment : Opportunities and Constraints

3 The PIC method and its parallelization

4 Accuracy issues, the example of numerical dispersion

5 Performances issues : the example of dynamic load balancing

6 Latest developments and results

A. Beck LWFA simulation 10 / 48



What is a super computer ?

Compute node Compute node Compute node

Network

Compute node

Distributed computing
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1) Many core

Increased performances

Reasonable energy budget
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2) GPGPU
NVIDIA & AMD :General Purpose Graphical Processor Unit

Most energy efficient architecture today
Difficult to adress :

Libraries : Cuda, OpenCl.
Directives programming : OpenMP 4 ou openACC.
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3) Vectorization

Excellent potential speed up, very good power budget.

Heavy constraints on data structure and algorithm.

Difficult to use at its full extent in a PIC code.
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Why am I concerned ? What should I do ?

As a developer

1 Expose parallelism. Massive parallelization is key.

2 Focus on the algorithm and data structures. Not on architectures.

3 Reduce data movement : Computation is becoming cheaper, loads and
stores not so much.

4 Be aware of the increasing gap between peak power and effective
performances. The race to exascale is becoming a race to exaflops.

As a user

1 Disclaimer. Parallelization is performed by experts.
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«A collaborative, open-source, multi-purpose PIC code
for the next generation of super-computers»

www.maisondelasimulation.fr/smilei
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A PIC code is a solver

Difficulty : Equations are coupled !
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Explicit PIC code principle

Solve Maxwell

Solve Vlasov

Interpolator

Pusher

Projector
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Domain decomposition
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Domain decomposition : MPI
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Domain decomposition : MPI
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Domain decomposition : MPI + openMP in SMILEI

+ Patch
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Domain synchronization

If processors have a shared memory ==> OpenMP

If processors have ditributed memory ==> MPI

Same logic for particles
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The Yee Lattice and discrete maxwell equations

Discrete Maxwell equations for finite difference time domain (FDTD) scheme :

Yee latice convienently allows first order finite difference scheme to produce
order 2 accuracy : O(∆x2).
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Numerical dispersion

A plane wave is propagated in vacuum via the discrete equations. We obtain
information on stability and accuracy.
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Domain decomposition : MPI + openMP in SMILEI
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Domain decomposition : MPI + openMP in SMILEI
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openMP dynamic scheduler benefits

MPI ×OpenMP
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OpenMP dynamic scheduler is able to smooth the load but only at the node
level.
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Patched base data structure
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Hilbert ordering

We need a policy to assign patches to MPI processes. To do so, patches are
organized along a one dimensional space-filling curve.

1 Continuous curve which goes across all patches.

2 Each patch is visited only once.

3 Two consecutive patches are neighbours.

4 In addition we want compactness !
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With dynamic load balancing activated

MPI ×OpenMP
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Yellow and red are copied from previous figure.
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Dynamic evolution of MPI domains

Color represents the local patch computational load imbalance

Iloc = log10 (Lloc/Lav)
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Multi-stages acceleration
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Enveloppe Model
F. Massimo
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Enveloppe Model
F. Massimo
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Azimuthal Fourier Decomposition
I. Zemzemi

F (x , r , θ) = F̃ 0 +
+∞∑
m=1

<
(

F̃ m(x , r)
)

cos(mθ) + =
(

F̃ m(x , r)
)

sin(mθ)

We can then rewrite Maxwell equations for each Fourier modes :

∂B̃m
r

∂t
=

im
r

Ẽm
x +

∂Ẽm
θ

∂x
Since the modes are independant, the simulation boils down to m 2D
simulations.
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Grand Challenge GENCI

New French super computer Irene : 79 488 cores and computational
power of 6,86 Pflop/s.

Preliminary access was granted to 20 applications and Smilei won this
“Grand Challenge” : 7 million hours.

Smilei ran and showed exceptional efficiency on 43200 cores.

Perfect opportunity to run a partial second stage simulation to validate
the enveloppe model on a long distance propagation.
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