

CMS: upgrade and physics (@IPHC)

Jeremy Andrea

Introduction

Show al

Top Physics

- CMS@LHC => very nice detector performances and physics results, Higgs discovery (!) but also many more measurements and searches.
- Future of LHC => HL-LHC :
 - up to 3000 fb⁻¹ but with the price of huge pileup (PU), a big
 - upgrades of detectors are crucial, managing large PU but also getting beyond (larger acceptance, timing layer etc...)
- What are the physics motivations for HL-LHC :
- Searches for new particles (high mass + rare processes).
- Higgs boson : properties (such as CP, <u>see talk V.Cherepanov</u>) and rare production/decays (<u>see talk of R.Salerno</u>).
- Probing the SM :
 - precision measurements,
 - rare processes and couplings,
 - probe SM in every corner of the phase space (diff cross sections, asymmetries, properties etc...),
 indirect searches and EFTs !
 Focusing here on IPHC activities/interests²

Requirements for the phase 2 CMS detector

- Challenges :
 - high inst. luminosity (5-7.5 10³⁴cm⁻²s⁻¹)=> pileup (140-200),
 - high integrated lumi (3-4 ab⁻¹) => high irradiation,
 - **computing** : reconstruction and storage of the data.
- Requirements of the CMS Phase2 upgrade :
 - maintain (or even improve) the current performances during the entire HL-LHC,
 - detectors need to resist to large radiation,
 - handle large number of pile-up events,
 - maintain acquisition rate to a manageable level.

Detector, take data every 25 ns.

hardware latence de 12.5 μs

software

7.5 kHz stockage

CMS Experiment at the LH-C, CERN Data recorded: 2016-Oct-14 09:33:30.044032 GMT Run / Event / LS: 283171 / 95092595 / 195 Control (2017) dedicated high pileup run in 2016

30 ps TOF resolution

CMS Phase 2 upgrades

Tracker upgrade

- Entirely new design, with reduced material budget.
- Inner tracker equipped with pixels,
- Outer tracker contains "p_T modules" :
 - fast estimation of track p_T, used at L1 trigger,
 - with 1 pixel-1 strip sensors (PS),
 - with 2 strip sensors (2S).
- Tracker Barrel "2S" (TB2S), Tracker Barrel "PS" (TBPS) and disks (TEDD, both PS and 2S).

Tracker Upgrade @IPHC

- CMS upgrade projects at IPHC : contributions to the new tracker.
- Development of firmware and software for the DAQ (inner tracker).
- Participation to the construction of TB2S :
 - integration of modules into ladders => for 50% of the ladders,
 - R&D and production of supports of the wheel,
 - assembly of the wheel (including production of the mechanicals pieces required for assembly).

- Construction of a test beam facility at IPHC : beam line (added to the CYRCé cyclotron) and a mini-telescope. Purpose : test module performances at high particle rates.
- Benefit a lot from the expertise gained during the construction of the current tracker:
 - Phase 1 pixel (DAQ) and construction of the endcap strip detector (TEC),
 - transmission of knowledge and expertise ongoing !

Some examples of HL-LHC prospective analyses, for direct and indirect searches

(a biased discussion)

Physics performance direct search in SUSY

CMS-TDR-019

- Search for EWKinos (lower cross section compared to strong production of SUSY particles) with final same sign dilepton states.
- Challenging : relatively low masses and low p_T spectra => large SM background.
- Use m_T as a discriminating variable. For a Br of 25%, the limits on neutralino $\tilde{\chi}_4^0$ and chargino $\tilde{\chi}_2^{\pm}$ masses can reach the TeV scale.

- Background studies for the search of DM in VBF.
- New tracker geometry (Phase II Conf4) improves very significantly the background rejection (here W+jets) compared to the current geometry (Phase II Conf3).
- Effects on missing H_T presented here.

CMS-FTR-13-014 9

New vertices can arise from the contributions of new particles "living at the loop level".

If the new particles are heavy enough => modelling of the loop by a new interaction vertex.

Physics performance SM and EFT

- Search for top-quark Flavour Changing Neutral Current in EFT (AC).
- Couplings investigated in top quark physics $t \rightarrow Hq, t \rightarrow Zq, t \rightarrow gq$ and $t \rightarrow \gamma q$.
- HL-LHC projections => large improvements expected, in particular on top-higgs couplings.

- Measurements of Higgs production and Higgs in association with tops can be combined to constrains dim-6 operators.
- Comparisons of run I measurements with expectations at HL-LHC.
- Several SM measurements (in particular in Higgs and top sector) can be combined to constrain EFT.
- Large statistic => test EFT in different regions of the phase space (differential cross sections helps !).

- The HL-LHC provides great opportunities to push forward the limits of the SM, and to search for news physics.
- Might be particularly relevant for the searches of rare processes and for probing the SM on every corner of the "phase space".
- IPHC involved in **Higgs**, **SUSY** and **top quark** physics => pursue and extend these topics in the future.
- To exploit fully the HL-LHC data, the detectors have to be "upgraded".
- Upgrade activities started years ago, and continue to ramp-up !

• CMS group of IPHC fully on-board!

Very exiting time head !

Backup

CMS Simulation

Simulated muons

4

CMS Simulation

Simulated muons

track reconstruction efficiency > 90% for $p_T > 1$ GeV fake rate < 2% (4%) at 140 (200) PU for p_T within 1-100 GeV

track efficiency in jet core

improved tracking in jet core thanks to better tracker granularity important for high p_T jets and boosted objects measurements !

good PV reco. efficiency: linear dependence as a function of pileup in the absence of timing info: PV merging rate significant for $|\Delta z| < 300 \ \mu m$

- DT and RPC: new readout with improved z and time precision
- CSC forward: new readout at high bandwidth
- forward extension: new stations GEM, RPC at $|\eta| \leq 2.4$ $|\eta| \leq 2.9$

and new GEM ME0 (for trigger) within 2.4 \leq

excellent muon reconstruction efficiency up to $|\eta| < 2.9$

MIP Timing Detector

30 ps time of flight resolution for charged particles within $|\eta|$ < 3.0

- Barrel Timing Layer within Tracker Support Tube
 - thin crystals (Lyso) 11x11 mm² + SiPM 4x4 mm², ~250k channels, 40 m²
- Endcap Timing Layer in front of High Granularity Calorimeter
 - Si sensors with gain (LGAD) 1x3 mm² pads, ~250k channels, 12 m²

precision timing at HL-LHC

- pileup vertices spread along beam direction and time: precision timing for charged and neutral particles will be a key to reduce pileup contamination
 - track timing (σ_t~30 ps) will allow
 4D (space+time) vertex reconstruction
 - x 4-5 reduction of vertex merging rate and number of pileup tracks associated to the signal PV

object performance: b-tagging

with timing information, b-tagging performance improves and is moderately sensitive to the high pileup conditions

object performance: MET

15% improvement in MET resolution,

> 30% reduction in tail (will reduce background for BSM searches)

High Granularity endcap Calorimeter

- 4D shower topology with timing resolution ~30 ps
 electromagnetic calo: 28 layers Silicon/W-Pb (26 X₀ 1.7 λ)
 hadronic calo: 8 layers Si + 16 mixed Si-Scintillators tiles within stainless still absorber (9 λ)

- 6 million Silicon channels
 - 600 m² ≈ 3x CMS Tracker
 - hexagonal silicon sensors
 100/200/300µm thick
- mixed layers in hadronic part 500 m² plastic scintillator

 - SiPM-on-tile readout
- operation at -30°C
 - with CO₂ cooling to mitigate increase of Si leakage current after irradiation _