

RESULTS FROM THE 1 T X YEAR DM SEARCH WITH XENON1T

Sara Diglio on behalf of the XENON Collaboration

Subatech – Nantes

IRN Terascale: 30th May – 1st June 2018, IPHC Strasbourg

THE DIRECT DETECTION PRINCIPLE

WIMPs elastically scatter off nuclei in targets, producing Nuclear Recoils (NR)

THE DIRECT DETECTION PRINCIPLE

WIMPs elastically scatter off nuclei in targets, producing Nuclear Recoils (NR)

DUAL PHASE TIME PROJECTION CHAMBER

Sara Diglio

XEN

0 Dark Matter Projec

DUAL PHASE TIME PROJECTION CHAMBER

THE XENON COLLABORATION

27 Institutions

11 Countries

~ 160 Scientists

IRN TERASCALE IPHC STRASBOURG – 31st MAY 2018

Matter Project

THE XENON PROJECT

Time

<image/> <section-header></section-header>	<image/> <section-header></section-header>	<image/> <section-header></section-header>	<image/> <section-header></section-header>
2005-2007	2008-2016	2012-2018	2019-2023
25 kg - 15cm drift	161 kg - 30 cm drift	3.2 ton - 1 m drift	8 ton - 1.5 m drift
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²

LXETPCS AS WIMP DETECTORS SCALING

XENON1T

THE XENON1T EXPERIMENT

THE XENON1T EXPERIMENT

XENON1T DATA TAKING

XENON1T DATA TAKING

DETECTOR STABILITY

All relevant parameters look stable throughout science runs

IRN TERASCALE IPHC STRASBOURG – 31st May 2018

ENERGY RECONSTRUCTION

- Energy loss to either light or charge channel
 → S1/S2 anticorrelation
- γ-lines from known sources
 - Internal source: ^{83m}Kr
 - Activated lines in NG: ^{129m}Xe, ^{131m}Xe
 - Detector material: ⁶⁰Co, ⁴⁰K
- Linear from keV to MeV

ENERGY RECONSTRUCTION & RESOLUTION

ELECTRONIC RECOIL BACKGROUND

• 222Rn : 10 μBq/kg

- Achieved with careful surface emanation control and measurements
- Further reduction with online cryogenic distillation
- ⁸⁵Kr: sub ppt Kr/Xe
- Achieved with online cryogenic distillation

lowest ER background
 ever in DM detectors
< 0.2 evt /(ton·year·keV)</pre>

ELECTRONIC RECOIL BACKGROUND

• 222 Rn : 10 μBq/kg

- Achieved with careful surface emanation control and measurements
- Further reduction with online cryogenic distillation
- ⁸⁵Kr: sub ppt Kr/Xe
 - Achieved with online cryogenic distillation
- Material radioactivity is subdominant
- Select fiducial volume in the TPC

lowest ER background ever in DM detectors < 0.2 evt /(ton·year·keV)

Rate [t ⁻¹ yr ⁻¹]	Fraction [%]
620 ± 60	84.5
31 ± 6	4.3
9 ± 1	4.9
30 ± 3	4.2
36 ± 1	1.4
720 ± 60	100
	Rate [t ⁻¹ yr ⁻¹] 620 ± 60 31 ± 6 9 ± 1 30 ± 3 36 ± 1 720 \pm 60

Expectations in 1-12 keV search window, 1t FV, single scatters, before ER/NR discrimination

JCAP04 (2016) 027

NUCLEAR RECOIL BACKGROUND

Radiogenic neutrons from (α, n) reactions and fission from ²³⁸U and ²³²Th: reduced via careful materials selection, event multiplicity and fiducialization

Source	Rate [t ⁻¹ yr ⁻¹]	Fraction [%]
Radiogenic	0.6 ± 0.1	96.5

Expectations in 4-50 keV search window, 1t FV, single scatters JCAP04 (2016) 027

NUCLEAR RECOIL BACKGROUND

- Radiogenic neutrons from (α, n) reactions and fission from ²³⁸U and ²³²Th: reduced via careful materials selection, event multiplicity and fiducialization
- Cosmogenic µ-induced neutrons significantly reduced by rock overburden and muon veto
- Coherent elastic v-nucleus scattering, constrained by ⁸B neutrino flux and measurements, is an irreducible background at very low energy (1 keV)

Source	Rate [t ⁻¹ yr ⁻¹]	Fraction [%]
Radiogenic	0.6 ± 0.1	96.5
Cosmogenic	< 0.01	<2.0
Coherent v scattering	0.012	2.0

Expectations in 4-50 keV search window, 1t FV, single scatters JCAP04 (2016) 027

SURFACE BACKGROUND

- Charge accumulation on the PTFE surfaces

 → ²²²Rn progeny (Pb210 and Po210) plate-out on
 PTFE surface produce events with reduced S2
 → S2 can be mis-reconstructed into NR signal region
- Suppressed by fiducialization of volume
- Data-driven model derived from surface event control samples

IRN TERASCALE IPHC STRASBOURG – 31st MAY 2018

ACCIDENTAL COINCIDENCES

- Lone S1 and lone S2 signals
 - o from interactions in regions with poor light/charge collection
 - lone signals close in time get paired to fake events
- Background modeled by searching for randomly paired lone S1/S2

Apply selection conditions to suppress ACs

ELECTRONIC AND NUCLEAR RECOIL CALIBRATIONS

Electronic Recoils

- ²²⁸Th source emanates
 ²²⁰Rn into LXe
- β-decay of ²¹²Pb to ²¹²Bi
 → low energy events
 (2-20 keV)
- Decay of activity dominated by ²¹²Pb half-life (10.6 h)

ELECTRONIC AND NUCLEAR RECOIL CALIBRATIONS

Electronic Recoils

- 228Th source emanates 220D into LXe
- β-decay of ²¹²Pb to ²¹²Bi → low energy events (2-20 keV)
- Decay of activity dominated by ²¹²Pb half-life (10.6 h)

²⁰⁸Pb

stable

β-

4999keV

Nuclear Recoils

- External ²⁴¹AmBe source mounted on a belt
- \circ The α particles emitted by the decay of the Am collide with the light Be nuclei producing fast neutrons
- **Neutron Generator**

DARK MATTER SEARCH DATA

- **Blinding** \rightarrow to avoid biases in event selection and signal/background modeling
- Salting (addition of fake events) → to protect against post-unblinding tuning of the cuts and background models

FIDUCIAL VOLUME OPTIMIZATION

Optimize fiducial volume before unblinding by using improved understanding

- position reconstruction
- detector response
- correlations between spectral and spacial distribution
- include knowledge on background distributions in statistical framework
- MC simulations

EVENT SELECTION & DETECTION EFFICIENCY

- Detection Efficiency from MC: dominated by 3-fold coincidence
- Event Selection: estimated from control samples or simulations
- Energy Region: defined within corrected S1 range 3-70 PE

DARK MATTER SEARCH RESULTS

- Results interpreted with unbinned profile likelihood analysis in cs1, cs2, R space
- Piechart indicate the relative probabilities of this event to be of a certain class for a best fit to a 200 GeV/c² WIMPs with a cross-section of 4.6 x 10⁻⁴⁷ cm2

SPATIAL DISTRIBUTION OF DARK MATTER SEARCH RESULTS

- Core volume to distinguish WIMPs over neutron background
- Yellow shaded regions display the 1σ (dark), and 2σ (light) probability density percentiles of the radiogenic neutron background component

OBSERVATIONS VS EXPECTATIONS

- Reference region between NR median and -2σ quantile in cS2_b
- **ER** is the most significant background and uniformly distributed in the volume
- Surface background contributes most in reference region, but radius will reduce its impact to be subdominant
- Neutron background is less than one event, and effect will be further suppressed by position information
- Other background components are completely sub-dominate

Event Rates	Full 1.3t	Reference 1.3t
Electronic recoils (ER)	627 ± 26	2.2 ± 0.1
neutrons	1.4 ± 0.6	0.8 ± 0.3
CEvNS	0.05 ± 0.02	0.02 ± 0.01
Accidental coincidences	0.47 ± 0.15	0.10 ± 0.03
Surface	106 ± 11	5.4 ± 0.5
Total background	736 ± 28	8.4 ± 0.6
Data	739	11
WIMP @200 GeV/c ² , σ _{SI} =4.6 X 10 ⁻⁴⁷ cm ²	3.36	1.55

IRN TERASCALE IPHC STRASBOURG – 31st MAY 2018

SR0+SR1 XENON1T RESULTS

- Most stringent 90% upper limit on WIMP-nucleon cross section at all masses above 6 GeV
 - $\,\circ\,$ Minimum at $\sigma_{\rm SI}$ = 4.1 x 10^{-47} cm^2 for a WIMP of 30 GeV/c^2
- A factor of 7 more sensitivity compared to previous experiments (LUX, PandaX-II)
- ~ 1 sigma upper fluctuation at high WIMP masses, could be due to background or signal

SUMMARY

- Demonstrated >1 year stable operation with the 1st multi-ton scale LXe TPC
- Achieved lowest background in a DM detector
- Surpassed the original XENON1T sensitivity goal, but found no statistically significant sign of WIMPs
- The search with XENON1T continues until an even larger detector, XENONnT, will allow another boost in sensitivity

