





# Can ILC observe fermions as composite particles?

F. RICHARD LAL Orsay
In collaboration with S. Bilokin and R. Poeschl



GDR terascale
May 31 2018 IPHC Strasbourg



## Introduction

 Recall the two possible solutions to the hierarchy problem after the Higgs discovery

#### **SUSY** and **compositeness**

- SUSY (still ?) OK but without an interpretation of the hierarchy of fermion masses
- Compositeness has several incarnations
- I will choose the RS model, which has several variants
- It predicts a rich spectrum of KK particles but direct discovery at LHC is not guaranteed since precision measurements from LEP-SLC tend to predict heavy vector KK bosons at ~10 TeV
- Usually b/t couple to KK particles but 'ordinary fermions' could also manifest significant deviations

F. Richard GDR May 2018

### RS in short



- It solves the hierarchy problem through exponential damping of the Planck scale to the EW scale
- It can describe fermion mass hierarchy by geometry in the extra dimension
- It naturally calls for non-universal fermion couplings
- **b/t** more coupled to KK than light quarks
- μ-τ could also be preferentially coupled to KK to explain the **B factory** anomalies arXiv:1709.05100
- It also calls for a **stabilizing mechanism** for the extra dimension resulting into the **radion** (also called dilaton) a scalar which could be light, below 100 GeV, and discovered at ILC and LHC e.g. in RZ or 2 photons (arXiv:1712.06410)

## Measuring fermionic final states



- Main tools
- Beam polarisation, e-80% and e+30%, for a model independent extraction of all amplitudes
- High luminosity, 2000 fb-1 at 250 GeV
- An excellent tracking detector to reconstruct secondary vertices and determine the charge of the b quark using charged B mesons
- A capability to identify charged kaons, giving the b quark charge with ~80% purity, is provided by the large TPC of ILD
- Very significant improvements with respect to LEP2 detectors specially a gain of 1000 on the luminosity!

## Experimental aspects for bb

- The b charge is needed to draw  $d\sigma/d\cos\theta$
- dE/dx from TPC in ILD gives a clean K/pi separation over a wide momentum range
- Very demanding on μvertex efficiency given the high multiplicity of B decays ~5
- A very detailed description can be found in the PhD document of S. Bilokin and in arXiv:1709.04289
- Double b charge tag needed to reach full purification using simple counting techniques comparing B+B- to B+B+ and B-B-





#### Results

- Very asymmetric angular distribution sensitive to b charge reconstruction
- After data based corrections, the angular distribution becomes ~identical to the generated one for  $|\cos\theta|$ <0.8
- Inefficiencies in the fwd region can be handled adjusting the theoretical distribution by S(1+cos²θ)+Acosθ in the fully efficient angular region
- This work has served as a benchmark for tracking, dE/dx reconstruction in ILD

#### e-L



## Model independent Interpretation

Measuring the angular distribution for e-R
 dσ/dcosθ =(1+cos²θ)(ReRb²+ReLb²)

- With eL/R one can extract ReRb<sup>2</sup> ReLb<sup>2</sup> LeLb<sup>2</sup> and LeRb<sup>2</sup> at % level
- Assuming that ee couplings are standard one can also extract gbRZ and gbLZ and solve the LEP1 puzzle
- This assumption is untrue in some RS models
- As shown in arXiv:1804.02846, it will be possible to measure ee coupling in ee->ee and validate this hypotesis





#### ee->ee measurements

- There is good sensitivity to BSM physics through t-channel interference arXiv:1804.02846
- The main challenge is to cope with the very high rate in the forward region both theoretically and experimentally keeping errors at ~0.1%
- LEP1 provides a precise measurement of the Zee coupling



γ Z Z'

## GHU coverage and comparison to LHC direct reach

- In Gauge-Higgs-Unification, arXiv: 1705.05282, H
  appears as the 4<sup>th</sup> gauge component and gauge
  symmetry protects its mass from radiative
  corrections (hierarchy problem)
- Extended symmetry (S,T) allows  $\gamma_{KK}$   $Z_{KK}$   $Z_{R}$  down to 5-10 TeV
- All right-handed fermions are close to the EW brane and interact with KK bosons
- The GHU model provides an interesting playground to illustrate the power of ILC. It predicts deviations both for t/b and lepton couplings
- ILC surpasses LHC direct searches and will be able to predict the masses of heavy resonances



#### Two RS scenarios

- GHU affects all flavours
- This model depends on one free parameter and can therefore be overconstrained at ILC
- It will allow to predict the Z' masses
- Another prediction stems from the AFBb anomaly observed at LEP1 which was interpreted as due to Z-Z' mixing hep-ph/0610173
- These scenarios can be tested on ee-> bb with full statistical significance
- They are clearly distinguishable
- ee->ee allows to measure ee anomalies only present in GHU



### Conclusion

- ILC250 with x1000 the luminosity of LEP2 and beam polarisation is the ideal instrument to understand a composite scenario as suggested by LEP1 and B factories anomalies
- This is illustrated by the two RS scenarios presented in this talk
- dE/dx K identification and very good μvertex efficiency are needed for ee->bb (and tt) measurements
- Leptons (not only b/t!) could also manifest significant deviations
- Expected accuracy below % allows to extend the mass domain of RS models well beyond the reach of LHC
- Progress is also needed to reduce theoretical uncertainties at the same level, in particular for what concerns EW corrections for ee->tt, bb, ee...
- These examples show how ILC could predict heavy resonances and pave the way for the next hadron collider



## ILD



Figure 3: Event display of the  $e^+e^- \to b\bar{b}$  process in a full simulation of the ILD detector (left) and schematic view of the ILD concept [2] (right).



## RS for pedestrians

- Extra dimension with warped space between two branes in the extra dimension
- Solves **hierarchy**:  $M_W = M_P \exp(-2k\Delta y)$ where  $k\Delta y \sim 35$  with  $k\sim 1/M_P$ ,  $\Delta y$  distance between the two branes
- Describes geometrically the **hierarchy** between fermion masses: light fermions close to the Planck brane are light and elementary, the heavy ones see the Higgs on the other brane called the EW brane
- The need to stabilize this brane requires an extra scalar field called the **radion**



## The $b/\tau$ anomalies at LEP



## **Beware EW corrections**

- Subtantial EW corrections were found (GRACE) for ee->tt with L polar <u>arXiv:1706.03432</u>
- Similar diagrams can contribute to ee->bb
- Calculations are needed to match the predicted statistical accuracies





Figure 4: Angular distributions of the production angle of top quark  $\theta_{top}$  at a CM energy of 500 GeV with  $e_L^-e_R^+$  polarization (left) and  $e_R^-e_L^+$  polarization (right). The dotted lines show tree-level results wheres the solid lines show full electroweak-corrected results.

## **GHU**

Table 2: Couplings of neutral vector bosons (Z' bosons) to fermions in unit of  $g_w = e/\sin\theta_W$  for  $\theta_H = 0.115$ . Corresponding Z-boson coupling in the SM are ( $g_{Z\nu}^L, g_{Z\nu}^R$ ) =  $(0.57027, 0), \ (g_{Ze}^L, g_{Ze}^R) = (-0.30651, 0.26376), \ (g_{Zu}^L, g_{Zu}^R) = (0.39443, -0.17584)$  and  $(g_{Zd}^L, g_{Zd}^R) = (-0.48235, 0.08792)$ .

| f              | $g_{Zf}^L$ | $g_{Zf}^R$ | $g_{Z^{(1)}f}^L$ | $g_{Z^{(1)}f}^R$ | $g_{Z_R^{(1)}}^L$ | $g_{Z_R^{(1)}f}^R$ | $g^L_{\gamma^{(1)}f}$ | $g^R_{\gamma^{(1)}f}$ |
|----------------|------------|------------|------------------|------------------|-------------------|--------------------|-----------------------|-----------------------|
| $\nu_e$        | 0.57041    | 0          | -0.1968          | 0                | 0                 | 0                  | 0                     | 0                     |
| $\nu_{\mu}$    | 0.57041    | 0          | -0.1968          | 0                | 0                 | 0                  | 0                     | 0                     |
| $\nu_{	au}$    | 0.57041    | 0          | -0.1967          | 0                | 0                 | 0                  | 0                     | 0                     |
| e              | -0.30659   | 0.26392    | 0.1058           | 1.0924           | 0                 | -1.501             | 0.1667                | -1.983                |
| $\mu$          | -0.30659   | 0.26391    | 0.1058           | 1.0261           | 0                 | -1.420             | 0.1667                | -1.863                |
| au             | -0.30658   | 0.26391    | 0.1057           | 0.9732           | 0                 | -1.354             | 0.1666                | -1.767                |
| $\overline{u}$ | 0.39453    | -0.17594   | -0.1361          | -0.7152          | 0                 | 0.9846             | -0.1111               | 1.2983                |
| c              | 0.39453    | -0.17594   | -0.1361          | -0.6631          | 0                 | 0.9205             | -0.1111               | 1.2036                |
| t              | 0.39339    | -0.17712   | 0.5068           | -0.4764          | 1.0314            | 0.6899             | 0.4158                | 0.8666                |
| d              | -0.48247   | 0.087972   | 0.1665           | 0.3576           | 0                 | -0.4923            | 0.05557               | -0.6491               |
| s              | -0.48247   | 0.087970   | 0.1664           | 0.3315           | 0                 | -0.4602            | 0.05556               | -0.6018               |
| b              | -0.48254   | 0.087964   | -0.6303          | 0.2387           | 1.0292            | -0.3446            | -0.2082               | -0.4331               |



#### at ILC Peff=0.89

Table 1: Masses and widths of Z' bosons,  $Z^{(1)}$ ,  $\gamma^{(1)}$ , and  $Z_R^{(1)}$  ( $N_F = 4$ )

| $\theta_H$ [rad.]         | $\frac{z_L}{10^4}$ | $m_{KK}$ [TeV] | $m_{Z^{(1)}}$ [TeV] | $\Gamma_{Z^{(1)}}$ [GeV] | $m_{\gamma^{(1)}}$ [TeV] | $\Gamma_{\gamma^{(1)}}$ [GeV] | $m_{Z_R^{(1)}}$ [TeV] | $\Gamma_{Z_R^{(1)}}$ [GeV] |
|---------------------------|--------------------|----------------|---------------------|--------------------------|--------------------------|-------------------------------|-----------------------|----------------------------|
| 0.115                     | 10                 | 7.41           | 6.00                | 406                      | 6.01                     | 909                           | 5.67                  | 729                        |
| 0.0917                    | 3                  | 8.81           | 7.19                | 467                      | 7.20                     | 992                           | 6.74                  | 853                        |
| 0.115<br>0.0917<br>0.0737 | 1                  | 10.3           | 8.52                | 564                      | 8.52                     | 1068                          | 7.92                  | 1058                       |

# Z-Z' mixing and propagators

Z-Z' Mixing ~energy independent

**Propagator ~s** 

$$Q_{ij} = Q_{\gamma}^{e}Q_{\gamma}^{f} + \frac{Q_{Z}^{e_{i}}Q_{Z}^{f_{j}}}{s_{W}^{2}c_{W}^{2}} \frac{s}{s - M_{Z}^{2} + i\Gamma_{Z}M_{Z}} + \sum_{V} \frac{g_{V}^{2}}{e^{2}}Q_{V}^{e_{i}}Q_{V}^{f_{j}}Q_{V}(c_{e_{i}})Q_{V}(c_{f_{j}}) \frac{s}{s - M_{V}^{2}}$$

- Easy to separate the 2 contributions operating at two energies
- $\delta Qij(250) \delta Qij(500)/4^3/4MIXij$
- Mixing should manifest itself only for bb and tt since LEP1 tells us that leptons show no measurable effect
- As for EFT one cannot deduce M<sup>2</sup>V not knowing the coupling constants

# Search for a light radion at ILC and LHC

arXiv:1712.06410

- Indication at LEP2 in Z $\phi$ (95) and at CMS  $\phi$ (95)->2 $\gamma$
- Radion solution for  $\xi$ =-0.47
- Complementarity between ILC and LHC



 $R_{\gamma\gamma}$  and  $\kappa^2$  predictions for  $\phi(95)$  versus the mixing parameter for a vacuum expectation  $\Lambda=TeV$ . Blind zones are in red for ILC and in blue for HL-LHC.  $\xi=-0.47$  (black line) gives a solution consistent with LEP2 and CMS indications and with Higgs measurements.

