B + L violation at colliders and new physics

Peter Reimitz

Institute for Theoretical Physics, Heidelberg University

IRN Strasbourg May 31, 2018

based on JHEP 1804 (2018) 076 (arxiv:1801.03492) with D.G. Cerdeño, C. Tamarit, K. Sakurai

B + L violation at colliders and Dark Matter

Peter Reimitz

Institute for Theoretical Physics, Heidelberg University

IRN Strasbourg May 31, 2018

based on JHEP 1804 (2018) 076 (arxiv:1801.03492) with D.G. Cerdeño. C. Tamarit. K. Sakurai

B + L violation+Dark Matter \rightarrow at Colliders?

Peter Reimitz

Institute for Theoretical Physics, Heidelberg University

IRN Strasbourg May 31, 2018

based on JHEP 1804 (2018) 076 (arxiv:1801.03492) with D.G. Cerdeño. C. Tamarit. K. Sakurai

Baryon Number Violating Processes

In the Standard Model:

- accidental baryon and lepton symmetries
- has been confirmed by all experiments so far
- ullet broken by quantum anomalies o Instanton Theory

Impact on physics of the early Universe:

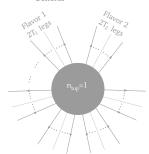
- important in electroweak baryogenesis
- play a crucial role for baryogenesis through leptogenesis

DM can take part in sphaleron processes! (seen later)

B + L violation from SU(2) Anomalies

ullet global anomaly for U(1) baryon and lepton charges:

$$\int \partial_{\mu}J^{\mu}_{B+L} = 6n_{\mathrm{top}} = 6\Delta N_{\mathrm{CS}}$$


• chiral anomaly on a quantum level

$$\Delta Q_{
m chiral} = \int \partial_{\mu} J_{
m chiral}^{\mu} = n_{
m top} \sum_{k} 2 T_{k}$$

with the topological charge $n_{\rm top}=\frac{g^2}{16\pi^2}\int {\rm Tr}(F_{\mu\nu}\tilde F^{\mu\nu})=1,2,...$ and representation k with Dynkin index T_k .

General Case:

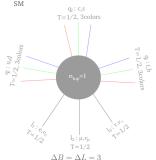
- · electric neutrality
- neutral under SU(3)_C
- number of left-handed fermions determined by chiral anomaly
- "mixture" of particles determined by violation of additional global charges

B + L violation from SU(2) Anomalies

ullet global anomaly for U(1) baryon and lepton charges:

$$\int \partial_{\mu}J^{\mu}_{B+L} = 6n_{ ext{top}} = 6\Delta N_{ ext{CS}}$$

chiral anomaly on a quantum level


$$\Delta Q_{
m chiral} = \int \partial_{\mu} J_{
m chiral}^{\mu} = n_{
m top} \sum_{k} 2 {\cal T}_{k}$$

with the topological charge $n_{\rm top}=\frac{g^2}{16\pi^2}\int {\rm Tr}(F_{\mu\nu}\tilde F^{\mu\nu})=1,2,...$ and representation k with Dynkin index T_k .

SM Case:

- ullet B+L violation by 6 (for $n_{
 m top}=1$)
- 12 left-handed Weyl-fermions in fundamental representation $T_k=1/2$
- SM vertex:

$$\mathcal{O}_{\mathsf{SM}} = \prod_{i=1,2,3} (q_{\mathsf{L}} q_{\mathsf{L}} q_{\mathsf{L}} I_{\mathsf{L}})_i$$

B + L violation from SU(2) Anomalies

ullet global anomaly for U(1) baryon and lepton charges:

$$\int \partial_{\mu}J^{\mu}_{B+L}=6n_{
m top}=6\Delta N_{
m CS}$$

chiral anomaly on a quantum level

$$\Delta Q_{\rm chiral} = \int \partial_{\mu} J^{\mu}_{\rm chiral} = n_{\rm top} \sum_k 2 T_k$$

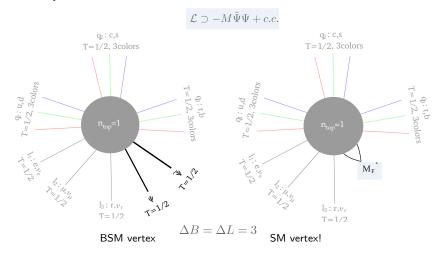
with the topological charge $n_{\rm top}=\frac{g^2}{16\pi^2}\int {\rm Tr}(F_{\mu\nu}\tilde F^{\mu\nu})=1,2,...$ and representation k with Dynkin index T_k .

How can BSM influence the vertices?

- Possible BSM extensions:
- $\Delta(B+L) = 6$ plus additional charge violation?
- 12 left-handed Weyl-fermions in fundamental representation T(r) = 1/2 plus more SU(2) fermions?
- additional fermion number violation strongly constrained
- But additional SU(2) fermions in certain representation k with T_k can extend the vertices!

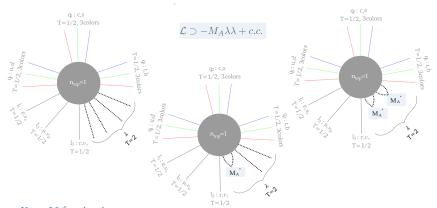
Anomalous vertices with massive fermions

Mass terms for Weyl fermions $\psi_{k,l}$:


$$\mathcal{L}\supset \underbrace{m_{kl}}_{-2}\underbrace{\psi_k}_{+1}\underbrace{\psi_l}_{+1}+c.c$$

Classical symmetry restored by treating m as charged field.

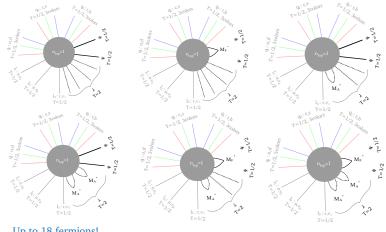
- symmetry violated as before by anomaly
- anomalous interaction vertices carry same charge as before
- \bullet spurious charge can be carried by mass insertions m_{kl}^{*}


Taking into Account more SU(2) particles

SM + Heavy Dirac in fundamental:

Taking into Account more SU(2) particles

SM + Heavy Weyl in adjoint:

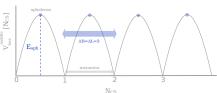


Up to 16 fermions!

$$\Delta B = \Delta L = 3$$

Taking into Account more SU(2) particles

SM + Heavy Dirac in fundamental + Heavy Weyl in adjoint:


Up to 18 fermions!

$$\Delta B = \Delta L = 3$$

Can we observe such processes at colliders?

Dressing fermion amplitudes with gauge bosons:

First instanton estimates yield exponential corrections to rate when summing over gauge boson emission [Ringwald, O.Espinosa]

$$\begin{split} \sigma_{B+L,\mathrm{leading}}^{2\to\mathrm{any}} &= f(\hat{s}) e^{-\frac{4\pi}{\alpha_W} F[\sqrt{\hat{s}}/E_0]}, \\ F\left[\frac{\sqrt{\hat{s}}}{E_0}\right] &= 1 - \frac{9}{8} \left(\frac{\sqrt{\hat{s}}}{E_0}\right)^{4/3}, \quad E_0 = \frac{6\pi m_W}{\alpha_W} \gtrsim E_{\mathrm{sph}} \end{split}$$

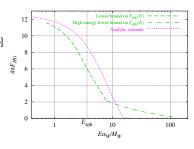
 \Rightarrow unsuppressed above $E_{\rm sph},$ but in conflict with unitarity arguments Instanton loop corrections:

$$F\left[\frac{\sqrt{\hat{s}}}{E_0}\right] = 1 - \frac{9}{8} \left(\frac{\sqrt{\hat{s}}}{E_0}\right)^{4/3} + \frac{9}{16} \left(\frac{\sqrt{\hat{s}}}{E_0}\right)^2 + \dots$$

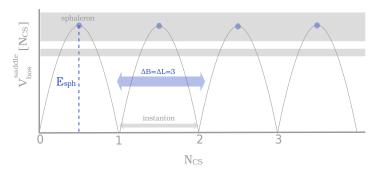
breaks down above $\sqrt{\hat{s}} > E_0...$

Can we observe such processes at colliders?

Further progress [Arnold & Mattis, Khlebnikov & Rubakov & Tinyakov, Mueller, Khoze & Ringwald]


cross-section looks like

$$\sigma_{B+L, {
m leading}}^{2 o {
m any}} = f(\hat{s}) e^{-\frac{4\pi}{\alpha_W} F[\sqrt{\hat{s}}/E_0]}$$


- with:
 - Unitarity bound F ≥ 0
 [Zakharov, Maggiore & Shifman, Veneziano]
 - ② Dispersion relation [Zakharov, Porrati, Khoze & Ringwald]

$$f(\hat{s}) = \frac{1}{m_W^2} \left(\frac{2\pi}{\alpha_W}\right)^{7/2}$$

Iower bound on F [Rubakov &Tinyakov, Bezrukov et al]

Can we observe such processes at colliders?

Problem solved?

Take $N_{\rm CS}$ as kinetic variable and get 1D dynamics in the $N_{\rm CS}$ direction \Rightarrow one has a band structure and tunneling may be unsuppressed for $\sqrt{\hat{s}} \geq E_{\rm sph}$ [Tye & Wong, Funakubo et al]

 \Rightarrow arises attention: BaryoGEN [1805.02786], CMS study [1805.06013]

How to Add More Particles

Calculate effective couplings with ordinary instanton techniques:

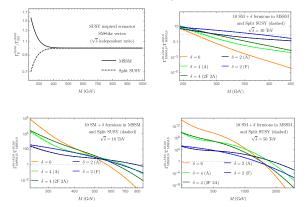
$$\langle \psi_{k_1}...\psi_{k_N}\rangle = \int \prod_m [\mathrm{d}\psi]_m [\mathrm{d}\psi^\dagger]_m \sum_{n_{\mathrm{top}}=q} \int [\mathrm{d}A_\mu^a]_q \exp(-S)\psi_{k_1}...\psi_{k_N}$$

- Saddle point expansion around extremal of S
- 1-instanton dominates: $\exp(-S_{\mathrm{inst}}) = \exp\left(-\frac{4\pi}{\alpha_W} n_{\mathrm{top}}\right)$
- Group Weyl fermions ψ_k, ψ_l into Dirac Ψ_{kl}

$$\langle \bar{\Psi}_{kl} \Psi_{kl} \rangle \propto \det \left(\frac{\delta^2 S}{\delta \bar{\Psi} \delta \Psi} \right) \prod (\text{Fermion prop. in instanton bg.})$$

Ensure compatibility with decoupling: Get SM-like vertices for heavy exotic fermions
 We consider ratios of rates

$$E(\sqrt{\hat{s}}, \delta, M) = \frac{\Gamma_{\text{model}}^{10+\delta, n_h, n_W}}{\Gamma_{\text{model}}^{10, 0, 0}} \sim \frac{\text{BSM}}{\text{SM} - \text{like}}$$


fermions have no impact on $F[\sqrt{\hat{s}}] o$ cancels in ratio

Candidates

BSM:

The "obvious" choice for models with additional SU(2) fermions is SUSY

- MSSM: SM+ fundamental fermions (Higgsino) + adjoint fermions (Wino) + gluino+ bino+ SUSY scalars
- Split SUSY: SM+ fundamental fermions + adjoint fermions

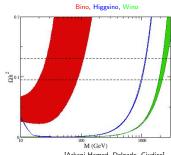
Sphaleron rate is significantly enhanced compared to the SM if the underlying theory has relatively light BSM fermions charged under SU(2)!

14 / 18

Candidates

Dark Matter:

several DM candidates in various SU(2) representations


 \Rightarrow focus on doublet and triplet with Spin 1/2

Quantum numbers			DM can	DM mass	$m_{{ m DM}^{\pm}}-m_{{ m DM}}$	Events at LHC	$\sigma_{\rm SI}$ in
$SU(2)_L$	$U(1)_Y$	Spin	decay into	in TeV	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45}{\rm cm}^2$
2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2
2	1/2	1/2	EH	1.1 ± 0.03	341	$160 \div 330$	0.2
3	0	0	HH^*	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3
3	0	1/2	LH	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3
3	1	0	HH, LL	1.6 ± 0.04	540	$3.0 \div 10$	1.7
3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7
4	1/2	0	HHH*	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6
4	1/2	1/2	(LHH^*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6
4	3/2	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5
4	3/2	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5
5	0	0	(HHH^*H^*)	5.0 ± 0.1	166	≪ 1	12
5	0	1/2	_	4.4 ± 0.1	166	≪ 1	12
7	0	0	-	8.5 ± 0.2	166	≪1	46

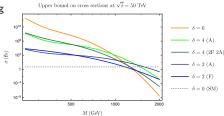
[Cirelli, Fornengo, Strumia]

Sweet spot to obtain the DM relic density:

- **1** Higgsino (doublet) with $m_\chi \sim 1$ TeV
- ⓐ Wino (triplet) $m_{\chi} \sim 2$ TeV +Sommerfeld effect ⇒ $m_{\chi} \sim 2.7 3$ TeV [hep-ph/0610249]

[Arkani-Hamed, Delgado, Giudice]

Cross Sections at Colliders


By comparing our results with former instanton calculations, we see that our results seem to be compatible with simple Ansatz

$$\sigma_{B+L, {\rm leading}}^{2 \to {\rm any}} = \frac{E(\sqrt{\hat{s}}, \delta, M)}{m_W^2} \left(\frac{2\pi}{\alpha_W}\right)^{7/2} {\rm e}^{-\frac{4\pi}{\alpha_W} F[(\sqrt{\hat{s}} - \delta M)/E_0]}$$

for partonic cross sections.

Upper bounds for cross sections obtained by using

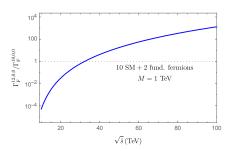
- lower bound on Holy Grail function from [Bezrukov et al]
- SM prefactor from [Khoze, Ringwald]
- our BSM enhancement factors

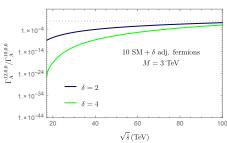
Cross Sections at Colliders

Convoluting with pdfs extrapolated to 100 TeV collider (with $\mathcal{L}=30~\mathrm{ab}^{-1}$) yields

SM:

$$\sigma \lesssim 6 \times 10^{-5} \text{ fb} \rightarrow \textit{N} \lesssim 1.8 \text{ events}$$


Higgsino DM with $m_{\chi} = 1$ TeV $\sigma \lesssim 4.9 \times 10^{-3}$ fb $\rightarrow N \lesssim 150$ events


Wino DM with
$$m_\chi=3$$
 TeV $\sigma\lesssim 4\times 10^{-10}$ fb $\to N\lesssim 1.2\times 10^{-5}$ events

If DM is 1 TeV Higgsino,

and taking the lower bound of the Holy Grail function, sphalerons should be observable at $100 \; \text{TeV}$

 \Rightarrow Holy Grail functions can be tested at 100 TeV

Summary & Outlook

- SU(2) anomalies predict new B+L-violating interaction vertices in the presence of BSM fermions charged under the gauge group
- Rates of new processes can be orders of magnitude above the SM rate!
- ratios of rates are independent of overall unknown cross section
- DM might make sphalerons observable and/or test Holy Grail functions
- ullet If B+L violating interactions are ever seen at colliders, they could be tied to BSM physics