

Linda Finco

IPN Lyon (IN2P3-CNRS)/UCB Lyon 1, France

Strasbourg (France)

March 23rd 2018

Standard Model of Particle Physics

- The SM describes the **elementary particles** and their **interactions**
- **Experimental results** have shown up to now an amazing **agreement** with its predictions
- Thanks to the good understanding of detectors and the accurate theory predictions, SM processes are known with an incredible precision

Higgs Discovery Seminar

A Higgs Boson

Still, a lot to be discovered...

- The discovery of a new boson consistent with the SM Higgs boson has completed the theory
- Nevertheless, the SM cannot address several crucial issues

Direct evidence from observation:

- existence of neutrino masses
- existence of dark matter and dark energy
- matter-antimatter asymmetry

Conceptual problems in the SM:

- the large number of free parameters
- the "hierarchy problem"
- the coupling unification

Strong indications that the SM is only a lowenergy expression of a more global theory

Two Higgs Double Models (+ Singlet)

- Two-Higgs-doublet models are simple extensions of the SM
- They introduce **two doublets** of scalar fields, ϕ_1 and ϕ_2 , in the SM Lagrangian of the scalar sector
- After symmetry breaking, five physical states are left: two CP-even (*h* and *H*), one CP-odd (*A*), and two charged (*H*[±]) bosons
- Four types, according to different patterns of quark and lepton couplings (most commonly considered are Type 1 and Type 2)
- Different possibilities of mass hierarchy
- In 2HDM+S a complex scalar singlet is added, leading to a pseudoscalar *a* and a scalar *s* (NMSSM)

Search for BSM Physics at the LHC

LHC data are sensitive to the presence for some combinations of the 2HDM parameters

How new Physics can be discovered?

- **Precision measurements** of the properties of the h(125 GeV) scalar boson
- Observation of BSM physics in **indirect searches** involving **scalar bosons**
- Discovery of **BSM decays** of the h(125 GeV) scalar boson
- Direct **discovery** of new **scalar particles**

Search for BSM Physics at the LHC

LHC data are sensitive to the presence for some combinations of the 2HDM parameters

How new Physics can be discovered?

HIS TALK

- Precision measurements of the properties of the h(125 GeV) scalar boson
- Observation of BSM physics in indirect searches involving scalar bosons
 Discovery of BSM decays of the h(125 GeV) scalar boson
 Direct discovery of new scalar particles

ATLAS and CMS Detectors

Challenges at Low-Mass

Low-mass searches are among the most difficult analyses at LHC:

- Theoretical guidance sometimes limited
- Special tuning of selection tools
- **Trigger** issues: because of the **limited bandwidth**, low energy events are generally discarded (high thresholds for single and double objects)

Search for BSM Physics at the LHC

LHC data are sensitive to the presence for some combinations of the 2HDM parameters

How new Physics can be discovered?

- **Precision measurements** of the properties of the h(125 GeV) scalar boson
- Observation of BSM physics in **indirect searches** involving **scalar bosons**
- Discovery of **BSM decays** of the h(125 GeV) scalar boson
- Direct discovery of new scalar particles

Exotic Decays of the h(125)

- The Scalar Sector of the SM is not very well known
- The SM Higgs boson has a very narrow width (~4 MeV): small coupling to a light state could lead to B(h → BSM) of the order of several percent
- The scalar sector could be a portal to New Physics
- Exotic decays are allowed in many models
- Still consistent with all the LHC measurements so far
- One possibility is to search for $h(125) \rightarrow aa$ (*a* pseudoscalar of 2HDM+S)

Final States of h(125)→ aa Decays

$a \rightarrow bb$

- Large BR if couplings proportional to fermion mass
- × Hard to trigger
- × Low identification efficiency
- imes High p_T thresholds
- × Large jet-backgrounds

$a ightarrow \tau au$

- Large BR if mass-proportional couplings
- Possible to trigger on leptonic τ decays
- × Low τ_h identification efficiency, with high p_T thresholds (> 20 GeV)

$a \rightarrow \mu\mu$

- ✓ Excellent mass resolution
- Easy to trigger
- Easy identification, with low p_T
- ✓ Open for any m_a >2 m_μ
- × Low BR if couplings proportional to fermion mass

With SM-like couplings:

 $\mathcal{B}(a \to bb)$

$$\sim 9 \times \mathcal{B}(a \rightarrow \tau \tau)$$

$$\sim 1700 \times \mathcal{B}(a \to \mu \mu)$$

Exotic Decays of the h(125) - Run I

Exotic Decays of the h(125) – ATLAS

Exotic Decays $h(125) \rightarrow aa \rightarrow 2b2\tau$

- New Run II result (presented at Moriond EW 2018)
- If $\mathcal{B}(a \to ff) \propto m_{ff}^2$ $\implies a \to bb$ and $a \to \tau\tau$ are the dominant and subdominant decays
- *h* → *aa* → **4b** is difficult to trigger (4 soft *b*-jets)
- h → aa → 2b2τ easier to trigger, thanks to the leptons originating from τ decays
- 3 di- τ final states: $e\tau_h$, $\mu\tau_h$ and $e\mu$
- At least **1** *b***-tagged jet** with $p_T > 20$ GeV

CMS-PAS-HIG-17-024

Exotic Decays $h(125) \rightarrow aa \rightarrow 2b2\tau$

۲

Exotic Decays $h(125) \rightarrow aa \rightarrow 2b2\tau$

m_a (GeV)

Exotic Decays h(125) \rightarrow aa/Z_dZ_d \rightarrow 4 ℓ

Exotic Decays h(125) \rightarrow aa/Z_dZ_d \rightarrow 4 ℓ

- Three different interpretations: Hypercharge portal, Higgs portal, 2HDM+S
- Dedicated selections are defined for each of the three decay channels

• Observable
$$\langle m_{\ell \ell} \rangle = \frac{1}{2} (m_{12} + m_{34})$$

ATLAS-CONF-2017-042 (Sub. to JHEP)

Search for BSM Physics at the LHC

LHC data are sensitive to the presence for some combinations of the 2HDM parameters

How new Physics can be discovered?

- **Precision measurements** of the properties of the h(125 GeV) scalar boson
- Observation of BSM physics in **indirect searches** involving **scalar bosons**
- Discovery of **BSM decays** of the h(125 GeV) scalar boson

• Direct **discovery** of new **scalar particles**

Search for Low Mass A

- The 2HDM includes a **CP-odd Higgs boson**, *A*, that could be lighter than h(125)
- At the LHC A could be produced in association with bottom quarks

In some schemes, $\sigma(pp \rightarrow bbA) \times \mathcal{B}(A \rightarrow \ell\ell)$ could be very large for $m_A < 60 \text{ GeV}$

$bbA \rightarrow bb\tau\tau$ Phys. Lett. B 758 (2016) 296

- $e\tau_h$, $\mu\tau_h$ and $e\mu$ final states
- Trigger seeded by single muon or electron
- At least **1** *b***-tagged jet** with $p_T > 20$ GeV
- Simultaneous fit to the $m_{\tau\tau}$ distributions of the 3 final states

$bbA \rightarrow bb\mu\mu$ JHEP 11 (2017) 010

- Trigger seeded by single muon
- At least 1 b-tagged jet with p_T > 20 GeV
- Fit to the $m_{\mu\mu}$ distribution with signal and background template from simulation

Search for Low Mass A $bbA \rightarrow bb\tau\tau$ $bbA \rightarrow bb\mu\mu$

boson negative couplings to down-

type fermions is excluded

to $A \to \mu \mu$ $\frac{\mathcal{B}(A \to \tau \tau)}{\mathcal{B}(A \to \mu \mu)} = \left(\frac{m_{\tau}}{m_{\mu}}\right)^2$

23

Search for H and A in $pp \rightarrow H \rightarrow ZA$

- In 2HDMs several mass hierarchies of the 5 Higgs bosons are possible
- Inverted mass hierarchy with a heavy H and a light pseudoscalar A is well motivated
- If $\tan \beta$ ranges between 0.5 and 1.5, the decay mode $H \rightarrow ZA$ is **dominant** and the decay mode $A \rightarrow bb$ is **large**
- $H \to ZA \to \ell \ell bb$
 - Use of dilepton trigger
 - Three choices of m_H and for each of them, between three and five hypotheses of m_A
 - Search for excess in $(m_{bb}, m_{\ell\ell bb})$ plane

CMS-PAS-HIG-16-010

Search for $h \rightarrow \gamma \gamma$ at Low Mass

- The Higgs boson at 125 GeV can be identified as the heavier scalar H, allowing to envisage a possible lighter particle h
- Small excess of events (~2σ) at LEP observed by 3 of the 4 experiments in bb/ττ channels

- During LHC Run I, the standard H→γγ
 search range was [110,150] GeV
- Clean signature with two isolated and highly energetic photons
- Final state fully reconstructed with excellent mass resolution
- Background from QCD (γγ γj jj) large enough to be evaluated directly on data

The $h \rightarrow \gamma \gamma$ Decay Channel at Low Mass

STANDARD MODEL $H \rightarrow \gamma \gamma$ ANALYSIS

LOW-MASS $H \rightarrow \gamma \gamma$ ANALYSIS

The $h \rightarrow \gamma \gamma$ Decay Channel at Low Mass

STANDARD MODEL $H \rightarrow \gamma \gamma$ ANALYSIS

LOW-MASS $H \rightarrow \gamma \gamma$ ANALYSIS

MAIN CHALLENGES:

Difficulty to extend the range to very low mass values (mainly for the trigger)
 Lower limit at > 65 GeV

The $h \rightarrow \gamma \gamma$ Decay Channel at Low Mass

STANDARD MODEL $H \rightarrow \gamma \gamma$ ANALYSIS

LOW-MASS $H \rightarrow \gamma \gamma$ ANALYSIS

MAIN CHALLENGES:

Additional Drell-Yan background Z → ee, with electrons misidentified as photons
 Decrease in sensitivity around 90 GeV

Signal and Background Model

- Event categorization defined to maximize S/B
- Signal extracted from background by fitting the observed diphoton mass distributions in each category

SIGNAL

- The signal shape corresponds to a standard Higgs boson in both CMS and ATLAS analyses
- The signal is fitted by a sum of Gaussian distributions/Double-sided Crystal Ball in each event class (then combined together)

BACKGROUND

- Continuum background modeled with a sum of polynomials/Landau and exponential distribution
- **Drell-Yan contribution** modeled with a doublesided Crystal Ball distribution
- Final background model is fitted to data

- 80 GeV < m_{γγ} < 110 GeV
- 4 inclusive classes
- Floating normalization of relic $Z \rightarrow ee$
- Total cross section

~2₀ excursion at ~97.5 GeV

- 65 GeV < $m_{\gamma\gamma}$ < 110 GeV
- 3 classes: conversion status (0, 1, 2)
- Fixed normalization of relic $Z \rightarrow ee$
- Fiducial cross section

~2 σ excursion at ~80 GeV

Results (Runs I and II)

- **8 TeV limits** on $\sigma \times BR$ **redone** with 0.1 GeV step
- No significant excess with respect to background expectations

Results – Combination of Run I and II

- Combined 8 TeV + 13 TeV σ×BR limit normalized to SM expectation:
 - Production processes assumed in SM proportions
 - No significant excess with respect to background expectations
- Expected and observed local p-values for 8 TeV, 13 TeV and their combination

Results – Combination of Run I and II

- Combined 8 TeV + 13 TeV σ×BR limit normalized to SM expectation:
 - Production processes assumed in SM proportions
 - No significant excess with respect to background expectations
- Expected and observed local p-values for 8 TeV, 13 TeV and their combination

Results – Combination of Run I and II

- Combined 8 TeV + 13 TeV σ×BR limit normalized to SM expectation:
 - Production processes assumed in SM proportions
 - No significant excess with respect to background expectations
- Expected and observed local p-values for 8 TeV, 13 TeV and their combination

Phenomenological Interpretations

- CMS Run I results interpreted in the contest of 2HDM
- Points generated in the **2HDM Type I** passing **indirect**, **LEP** and **LHC constraints**
- Some exclusion possible with VBF + VH, $m_h \sim < 105 \text{ GeV}$

Phenomenological Interpretations

- Projections of red points on previous slide:
 - orange if $\sigma \times \mathcal{B} > CMS$ observed limit (excluded)
 - **violet** if $\sigma \times \mathcal{B} < \text{CMS}$ observed limit (still permitted)

$\tan\beta vs \, \sin(\beta-\alpha)$

 $\tan\beta vs m_h$

Future Perspectives

For (pseudo-) scalars below $m_{\phi} \sim$ 70 - 80 GeV:

- Decay $\phi \rightarrow ZZ^*$ kinematically closed
- Gluon fusion mechanism not promising
- Take advantage of the Z → ℓℓ from pp → Zφ (triggering on lepton instead of on photons)

Using **generic** (EFT) **parameters** so that any BSM model can be constrained

Very preliminary results from Les Houches 2017 (A. Angelescu, G. Moreau, S. Fichet, S. Gascon, L.Finco, S. Zhang)

Conclusions

- The Scalar Sector of the SM is a favored place to look for new physics effects
- LHC data are sensitive to some theoretical models (2HDM, NMSSM...)
- We have just started to extract the physics potential of the 13 TeV dataset
- We have a **comprehensive view** of the potential of the main channels from the **Run1 experience**
- Necessary to develop dedicated triggers, tools and studies for low p_T searches
- Feedback with theory community fundamental to keep interest in exploring these signatures

Backup

2HDM Types

	Type I	Type II	Flipped	Lepton Specific
			(Type Y)	(Type X)
Up-type quark	ϕ_2	ϕ_2	ϕ_2	ϕ_2
Down-type quark	ϕ_2	ϕ_1	ϕ_1	ϕ_2
Leptons	ϕ_2	ϕ_1	ϕ_2	ϕ_1

Photon Energy

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

- Photon energy reconstructed by building clusters of energy deposits in the electromagnetic calorimeter.
- Energy and its uncertainty corrected for local and global shower containment
 - regression technique:
 - corrects photons' energies
 - provides an estimate of energy resolution
- Energy scale in data corrected as a function of data taking epochs, pseudorapidity and EM shower width
- Smearing to the reconstructed photon energy in MC to match the resolution in data

CMS Simulation Preliminary

GeV

160

13 TeV

All classes

Vertex Identification

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

 Vertex assignment considered as correct within 1 cm of the diphoton interaction point

negligible impact on mass resolution

- Multi-variate approach:
 - Observables related to tracks recoiling against the diphoton system
 - direction of conversion tracks
- Second MVA discriminant to estimate the probability for the vertex assignment to be within 1 cm

used later for diphoton classification

• Method validated on $Z \rightarrow \mu\mu$ events, by refitting vertices ignoring the muon tracks

Photon Selection

• Trigger selection:

Trigger paths based on transverse energy, H/E, electromagnetic shower shapes and isolation variables, m_{vv}

Dedicated paths for low-mass analysis

- Search range extended at lower values
- Preselection:
 - Similar to trigger requirements, but more stringent
 - Specific cuts for the low-mass analysis
 - Electron veto based on pixel detector
- Photon Identification:
 - Multi-Variate approach (BDT) to reject fake photon candidates (mainly from π⁰ mesons produced in jets)
 - Shower shape and isolation observables, median energy density (ρ)
 - BDT output provides an estimate of the per-photon quality

Event Categorization

- To gain sensitivity, events are split into classes according to their expected signal/ background ratio
- Events are categorized according to the photon kinematics, per-event mass resolution, photon ID and good vertex probability by a multivariate classifier (same as the standard H→ γγ analysis)
- Number of classes limited by MC Drell-Yan statistics (one class less than the standard analysis, no exclusive classes tagging production modes like in standard analysis)

Background Model

CONTINUUM BACKGROUND

Modeled with a sum of polynomials (from 4 families, order chosen with a p-value test)

DRELL-YAN CONTRIBUTION

- Modeled with a double-sided Crystal Ball (DCB) distribution
- Shape parameters extracted by fitting MC
 Z → ee events passing the whole analysis selection (double-fake events)
- Data/MC systematic uncertainty estimated from single-fake Z → ee events

FINAL BACKGROUND MODEL

Polynomial + double-sided Crystal Ball

- Fitted to the data
- DCB fraction let floating

Background Model

CONTINUUM BACKGROUND

Modeled with a sum of polynomials (from 4 families, order chosen with a p-value test)

DRELL-YAN CONTRIBUTION

- Modeled with a double-sided Crystal Ball (DCB) distribution
- Shape parameters extracted by fitting MC
 Z → ee events passing the whole analysis selection (double-fake events)
- Data/MC systematic uncertainty estimated from single-fake Z → ee events

FINAL BACKGROUND MODEL

Polynomial + double-sided Crystal Ball

- Fitted to the data
- DCB fraction let floating

Recherche de $h \rightarrow \gamma \gamma$ à Basse Masse

CMS-PAS--HIG-17-013

Event Class	Expected SM-like Higgs boson signal $m_{\rm H} = 90 \text{GeV}, \sqrt{s} = 8 \text{TeV}$								Bkg
Event Class	Total	ggH	VBF	WH	ZH	tīH	$\sigma_{\rm eff}$	$\sigma_{\rm HM}$	(GeV^{-1})
0	64.0	68.9 %	15.0 %	8.8 %	4.8 %	2.5 %	0.94	0.78	262.8
1	99.5	87.5 %	5.2 %	4.3 %	2.3 %	0.7 %	1.20	0.96	922.6
2	121.1	89.9 %	3.9 %	3.7 %	2.0 %	0.5 %	1.61	1.26	1844.4
3	88.9	92.2 %	2.8 %	3.1 %	1.6 %	0.3 %	2.11	1.68	3098.6
Total	373.5	86.2 %	5.9 %	4.6 %	2.5 %	0.8 %	1.47	1.05	6128.4

CMS-PAS-HIG-17-013

Event Class	Expected SM-like Higgs boson signal $m_{\rm H} = 90 \text{GeV}$, $\sqrt{s} = 13 \text{TeV}$								Bkg
Event Class	Total	ggH	VBF	WH	ZH	tīH	$\sigma_{\rm eff}$	$\sigma_{\rm HM}$	(GeV^{-1})
0	456.8	80.1 %	9.7 %	4.9 %	2.8 %	2.5 %	1.11	0.96	1870.6
1	394.9	90.1 %	4.1 %	3.2 %	1.7 %	0.9 %	1.69	1.45	3876.1
2	214.1	92.0 %	3.3 %	2.6 %	1.4 %	0.7 %	2.18	1.73	4301.0
Total	1065.8	86.2 %	6.3 %	3.8 %	2.1 %	1.6 %	1.49	1.16	10047.7

Recherche de $h \rightarrow \gamma \gamma$ à Basse Masse

H→ yy à ATLAS

arXiv:1802.04146

Signal and Background Events

Event Class	Expected SM-like Higgs boson signal $m_{\rm H} = 90 \text{GeV}, \sqrt{s} = 8 \text{TeV}$								
Event Class	Total	ggH	VBF	WH	ZH	tīH	$\sigma_{ m eff}$	$\sigma_{ m HM}$	(GeV^{-1})
0	64.0	68.9 %	15.0 %	8.8 %	4.8 %	2.5 %	0.94	0.78	262.8
1	99.5	87.5 %	5.2 %	4.3 %	2.3 %	0.7 %	1.20	0.96	922.6
2	121.1	89.9 %	3.9 %	3.7 %	2.0 %	0.5 %	1.61	1.26	1844.4
3	88.9	92.2 %	2.8 %	3.1 %	1.6 %	0.3 %	2.11	1.68	3098.6
Total	373.5	86.2 %	5.9 %	4.6 %	2.5 %	0.8 %	1.47	1.05	6128.4

CMS-HIG-17-013

Event Class	Expected SM-like Higgs boson signal $m_{\rm H} = 90 \text{GeV}$, $\sqrt{s} = 13 \text{TeV}$								
Event Class	Total	ggH	VBF	WH	ZH	tīH	$\sigma_{ m eff}$	$\sigma_{ m HM}$	(GeV^{-1})
0	456.8	80.1 %	9.7 %	4.9 %	2.8 %	2.5 %	1.11	0.96	1870.6
1	394.9	90.1 %	4.1 %	3.2 %	1.7 %	0.9 %	1.69	1.45	3876.1
2	214.1	92.0 %	3.3 %	2.6 %	1.4~%	0.7 %	2.18	1.73	4301.0
Total	1065.8	86.2 %	6.3 %	3.8 %	2.1 %	1.6 %	1.49	1.16	10047.7

CMS-HIG-17-013

Mass Spectra (8 TeV)

Mass Spectra (13 TeV)

Mass Resolution

