Particle identification with a track fit χ^{2}

Ferenc Siklér
KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

RICH2010, Cassis, France
6 May 2010

Motivation - some PID techniques

Motivation - RICH + multiple scattering

- AQUA-RICH experiment
- Cherenkov photons used to determine the direction of the particle
- With few mrad resolution, access to deflections due to multiple scattering
- Use the distribution of scattering angles to determine momentum p
- Particle type or $\beta \approx 1$ must be assumed

A. GrossHeim and K. Zuber, Nucl. Instr. and Meth. A 533 (2004) 532

Momentum is underestimated since particle also loses momentum
But: what to do if you have a tracker detector only?

Motivation - multiple scattering

- ICARUS T600 TPC
- 600 ton liquid Ar time projection chamber
- Atmospheric muons, so assume that particles are muons
- Reconstruct particle momentum by looking at multiple scatters

A. Ankowski, Eur. Phys J C 48 (2006) 667

But: how to identify particles with tracker only?

Tracker + magnetic field

- Where can that be useful?
- particle identification, or at least unfolding of yields
$-d E / d x$ is not always available (e.g. ATLAS pixel detector)
- supplementary measurement
- How to do that?
- multiple Coulomb scattering
- measure the scattering angles during layer traversal
- But: position measurement (2D) has uncertainties, also covariance
- But: there is energy loss, comparable to the effect above
- What can you expect?
- Reasonable $\pi-\mathrm{K}$ and $\pi-\mathrm{p}$ separation at low momentum, for $p<1 \mathrm{GeV} / \mathrm{c}$

Need for a coherent framework

Physical effects

- Multiple scattering
- Planar scattering angle (Gaussian approximation) $\theta_{0}=\frac{13.6 \mathrm{MeV}}{\beta c p} z \sqrt{x / X_{0}}\left[1+0.038 \ln \left(x / X_{0}\right)\right]$,

$$
\sigma_{m s} \approx l \theta_{0} \propto \frac{1}{\beta p}
$$

- Energy loss
- Most probable energy loss and full width approximated as
$\Delta_{p}=\xi\left[\ln \frac{2 m c^{2} \beta^{2} \gamma^{2} \xi}{I^{2}}+0.2000-\beta^{2}-\delta\right]$
$\Gamma_{\Delta}=4.018 \xi$, where $\xi=\frac{K}{2} z^{2} \frac{Z}{A} \rho \frac{x}{\beta^{2}}$;

$$
\delta_{e l} \approx-\frac{0.3 B l^{2}}{2} \frac{\Delta}{\beta p^{2}}
$$

Shown: $B=3.8 \mathrm{~T}$ magnetic field, $x / X_{0}=2 \% \mathrm{Si}$, then 5 cm flight to the next layer Compare with a local position resolution of $25 \mu \mathrm{~m}$ (for Si , dotted)

Tracking with Kalman - overview

- Kalman filter
- widely used method of track and vertex fitting
- handling of known physics effects (transport F; process noise w, Q)
- handling of measurement uncertainties (measurement noise v, R)
- measurement (H, z)
- equivalent to the global linear least square method, optimal
- prediction + filtering steps, followed by smoothing
R. Frühwirth, Nucl. Instr. and Meth. A 262 (1987) 444

Note: outliers ($\delta \mathrm{s}$, noise, fake hits) are suppressed during pattern recognition

Tracking with Kalman - model

- Kalman filter
- the state vector $x=(\kappa, \theta, \psi, r \phi, z) 5$ dimensional, where

$$
\begin{aligned}
\kappa & =q / p \\
\theta & =\theta(\mathbf{p}) \\
\psi & =\phi(\mathbf{p}) \\
r \phi & =r \phi(\mathbf{r}) \\
z & =r_{L}
\end{aligned}
$$

(signed inverse momentum)
(local polar angle) (local azimuthal angle)
(global azimuthal position)
(global longitudinal position)

- measurement vector

$$
\begin{gathered}
m=(r \phi, z) \\
H=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

- measurement operator
- the covariance of the process noise

$$
Q=\left(F_{\kappa} \otimes F_{\kappa}^{T}\right) \sigma_{\kappa}^{2}+\left(F_{\theta} \otimes F_{\theta}^{T}\right) \sigma_{\theta}^{2}+\left(F_{\psi} \otimes F_{\psi}^{T}\right) \sigma_{\psi}^{2}
$$

- the covariance of the measurement noise

$$
V=\left(\begin{array}{cc}
\sigma_{r \phi}^{2} & 0 \\
0 & \sigma_{z}^{2}
\end{array}\right)
$$

Tracking with Kalman

ATLAS

ALICE

CMS

$$
p_{T}=0.8 \mathrm{GeV} / \mathrm{c}, 10 \text { particles }
$$

Different curvatures due to the differing magnetic fields
2 T
0.4 T
3.8 T

Tracking $-\chi^{2}$

- Kalman filter
- merit function of trajectory

$$
\chi^{2}\left(m_{0}\right)=\sum_{k} r_{k}^{T} R_{k}^{-1} r_{k}
$$

where r_{k} is the residual of k th hit (measured - predicted),
R_{k} is the local covariance

- during propagation a mass m_{0} was assumed (usually m_{π})
- if R is closely diagonal, rewrite

$$
\chi^{2}\left(m_{0}\right) \approx \sum_{i}\left(\frac{x_{i}-\mu_{i}\left(m_{0}\right)}{\sigma_{i}\left(m_{0}\right)}\right)^{2}=\sum_{i}\left(\frac{\sigma_{i}(m)}{\sigma_{i}\left(m_{0}\right)}\right)^{2}\left(\frac{x_{i}-\mu_{i}\left(m_{0}\right)}{\sigma_{i}(m)}\right)^{2}=\sum_{i} a_{i} z_{i}
$$

where i runs on (if needed, split) 1D hits

- linear combination of non-central χ^{2} distributed random variables
- the distribution of the z_{i} s follows $f_{X}\left(z_{i} ; 1, \lambda_{i}\right)$

$$
a_{i}=\left(\frac{\sigma_{i}(m)}{\sigma_{i}\left(m_{0}\right)}\right)^{2}, \quad \lambda_{i}=\left(\frac{\mu_{i}(m)-\mu_{i}\left(m_{0}\right)}{\sigma_{i}(m)}\right)^{2}
$$

Weights
Shifts

Tracking - χ

- $\chi^{2} \rightarrow \chi$
- The use of $\chi \equiv \sqrt{\chi^{2}}$ is more practical
- Can be approximated by a scaled non-central χ distribution: $1 / \alpha f(\chi / \alpha ; r, \lambda)$

$$
\alpha^{2}=\frac{\sum_{i} a_{i}^{2}}{\sum_{i} a_{i}}, \quad r=\frac{\left(\sum_{i} a_{i}\right)^{2}}{\sum_{i} a_{i}^{2}}-n_{p}, \quad \lambda^{2}=\sum_{i} \lambda_{i}
$$

- the scale factor is $\alpha \approx \beta\left(m_{0}\right) / \beta(m)$
$-r$ is the ndof, n_{p} is the number of parameters, λ is usually small
\Rightarrow that can be well approximated by a Gaussian

$$
\mu_{\chi}=\alpha \sqrt{r-\frac{1}{2}+\lambda^{2}}, \quad \sigma_{\chi}=\alpha \sqrt{\frac{1}{2}}
$$

- What to do?
- during track fitting determine χ with assuming m_{0}
- since μ_{χ} and σ_{χ} depend on the ratio $\sigma_{i}(m) / \sigma_{i}\left(m_{0}\right)$, the distribution of χ will be mass dependent

Detectors - some trackers at LHC

- ATLAS

3 Si pixels, 4 Si strips, and many (≤ 36) straws

- ALICE

2 Si pixels, 2 Si drifts, 2 Si strips, and a large gas TPC

- CMS

3 Si pixels, 10 Si strips

Detectors - properties

	$\begin{gathered} B \\ {[\mathrm{~T}]} \end{gathered}$	Subdetector	Radius of layers [cm]	$\begin{gathered} \sigma_{r \phi} \\ {[\mu \mathrm{~m}]} \end{gathered}$	$\begin{gathered} \sigma_{z} \\ {[\mu \mathrm{~m}]} \end{gathered}$	$\begin{gathered} x / X_{0} \\ {[\%]} \end{gathered}$	$\zeta_{r \phi}$	ζ_{z}	Split meas.
Exp A	2	pixels (barrel)	5.0, 8.8, 12.2	10	115	4	0.1	1	50
		strips (SCT) ${ }^{\text {s }}$	29.9, 37.1, 44.3, 51.4	17	580	4	0.1	3	
		straw (TRT)	$56.3-106.6$ (≤ 36 hits)	130	-	0.5	10	-	
Exp B	0.4	pixels (SPD)	3.9, 7.6	12	100	1	0.2	2	12
		drifts (SDD)	14.9, 23.8	35	23	1	0.3	0.2	
		strips (SSD) ${ }^{\text {s }}$	38.5, 43.6	15	730	1	0.1	7	
		[gas (TPC)	$84.5-246.6$ (≤ 159 hits)	900	900	10^{-3}	10^{3}	10^{4}]	
Exp C	3.8	pixels (PXB)	4.4, 7.3, 10.2	15	15	3	0.2	0.2	20
		strips (TIB) ${ }^{s}$	25.5, 33.9	$23 / \sqrt{2}$	230	4	0.1	0.8	
		strips (TIB)	41.8, 49.8	35	-	2	0.2	-	
		strips (TOB) ${ }^{s}$	60.8, 69.2	$53 / \sqrt{2}$	530	4	0.1	2	
		strips (TOB)	78.0, 86.8, 96.5, 108.0	53, 35	-	2	0.2	-	

$$
\operatorname{Exp} A=A T L A S, \quad \operatorname{Exp} B=A L I C E, \quad \operatorname{Exp} C=C M S
$$

- Sensitivity
- If the deviations are dominated by multiple scattering and local position measurement: $\zeta=\sigma_{\text {pos }} / \sigma_{m s}\left(m_{0}\right)$
- Shown for pions at $p=1 \mathrm{GeV} / \mathrm{c}$
- Only silicons and straws contribute to result

Fast simulation results follow

Results $-\chi$ distributions

Assumed particle composition: $\pi: \mathrm{K}: \mathrm{p}: \mathrm{e}=70: 10: 18: 2$ Expected distributions at low and high p_{T}

Results - performance

Results - separations

- Separation power
- between two particles $\left(m_{1}\right.$ and $\left.m_{2}\right) \quad \rho_{\chi}=\frac{2\left[\mu_{\chi}\left(m_{1}\right)-\mu_{\chi}\left(m_{2}\right)\right]}{\sqrt{\sigma_{\chi}^{2}\left(m_{1}\right)+\sigma_{\chi}^{2}\left(m_{2}\right)}}$
- with approximations
- Comments

$$
\rho_{\chi} \approx 2 \sqrt{2 r-1} \frac{1-\beta(m) / \beta\left(m_{0}\right)}{\sqrt{1+\left[\beta(m) / \beta\left(m_{0}\right)\right]^{2}}}
$$

- For not very low p and good local position resolution: no dependence on magnetic field, radii, material thickness
- The mean and σ of the Gaussians are determined by p and mass via β
- Even at very low p the variances still stay the same

Results - separation

$\pi-p$ separation

- Comments
- r is sometimes smaller than expected: low sensitivity measurements many straws with $\zeta_{r \phi}=10$ (Exp A); strip layers with $\zeta_{z}=7$ (Exp B)
- Outliers and their removal procedure introduces shifts in the fitted value of r and in the resolution ρ_{χ}
- The steps are due to the changing number of crossed layers with varying p

Summary

- Particle identification with track fit χ^{2}
- Tracker + magnetic field
- Perform global linear χ^{2} fit with a mass hypothesis
- One widely used option is Kalman-filter
- Knowledge of detector material and local position resolution
- Sensitivity to detector alignment
- Use for particle identification or check material budget

Performance is determined by the number of good sensitivity measurements

For details see NIM A paper http://dx.doi.org/10.1016/j/nima.2010.03.098 [arXiv:0911.2624]

