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Motivation – some PID techniques
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Are there more basic methods?
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Motivation – RICH + multiple scattering

• AQUA-RICH experiment

– Cherenkov photons used to determine the direction of the particle
– With few mrad resolution, access to deflections due to multiple scattering
– Use the distribution of scattering angles to determine momentum p
– Particle type or β ≈ 1 must be assumed

A. GrossHeim and K. Zuber, Nucl. Instr. and Meth. A 533 (2004) 532

Momentum is underestimated since particle also loses momentum
But: what to do if you have a tracker detector only?
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Motivation – multiple scattering

• ICARUS T600 TPC

– 600 ton liquid Ar time projection chamber
– Atmospheric muons, so assume that particles are muons
– Reconstruct particle momentum by looking at multiple scatters

A. Ankowski, Eur. Phys J C 48 (2006) 667

But: how to identify particles with tracker only?

Ferenc Siklér: Particle identification with a track fit χ2 4



Tracker + magnetic field

• Where can that be useful?

– particle identification, or at least unfolding of yields
– dE/dx is not always available (e.g. ATLAS pixel detector)
– supplementary measurement

• How to do that?

– multiple Coulomb scattering
– measure the scattering angles during layer traversal
– But: position measurement (2D) has uncertainties, also covariance
– But: there is energy loss, comparable to the effect above

• What can you expect?

– Reasonable π–K and π–p separation at low momentum, for p < 1 GeV/c

Need for a coherent framework
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Physical effects
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• Multiple scattering

– Planar scattering angle (Gaussian approximation)
θ0 = 13.6 MeV

βcp z
√
x/X0

[
1 + 0.038 ln(x/X0)

]
, σms ≈ lθ0 ∝ 1

βp

• Energy loss

– Most probable energy loss and full width approximated as

∆p = ξ
[
ln 2mc2β2γ2ξ

I2 + 0.2000− β2 − δ
]

Γ∆ = 4.018ξ, where ξ = K
2 z

2Z
Aρ

x
β2; δel ≈ −0.3Bl2

2
∆
βp2

Shown: B = 3.8 T magnetic field, x/X0 = 2% Si, then 5 cm flight to the next layer

Compare with a local position resolution of 25 µm (for Si, dotted)
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Tracking with Kalman – overview

• Kalman filter

– widely used method of track and vertex fitting
– handling of known physics effects (transport F ; process noise w, Q)
– handling of measurement uncertainties (measurement noise v, R)
– measurement (H, z)
– equivalent to the global linear least square method, optimal
– prediction + filtering steps, followed by smoothing

R. Frühwirth, Nucl. Instr. and Meth. A 262 (1987) 444

Note: outliers (δs, noise, fake hits) are suppressed during pattern recognition
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Tracking with Kalman – model

• Kalman filter

– the state vector x = (κ, θ, ψ, rφ, z) 5 dimensional, where

κ = q/p (signed inverse momentum)

θ = θ(p) (local polar angle)

ψ = φ(p) (local azimuthal angle)

rφ = rφ(r) (global azimuthal position)

z = rL (global longitudinal position)

– measurement vector m = (rφ, z)
– measurement operator

H =
(

0 0 0 1 0
0 0 0 0 1

)
– the covariance of the process noise

Q = (Fκ ⊗ FTκ )σ2
κ + (Fθ ⊗ FTθ )σ2

θ + (Fψ ⊗ FTψ )σ2
ψ

– the covariance of the measurement noise

V =
(
σ2
rφ 0
0 σ2

z

)
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Tracking with Kalman

ATLAS ALICE CMS
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Tracking – χ2χ2χ2

• Kalman filter

– merit function of trajectory

χ2(m0) =
∑
k

rTkR
−1
k rk

where rk is the residual of kth hit (measured – predicted),
Rk is the local covariance

– during propagation a mass m0 was assumed (usually mπ)
– if R is closely diagonal, rewrite

χ2(m0) ≈
∑
i

(
xi − µi(m0)
σi(m0)

)2

=
∑
i

(
σi(m)
σi(m0)

)2(
xi − µi(m0)
σi(m)

)2

=
∑
i

aizi

where i runs on (if needed, split) 1D hits
– linear combination of non-central χ2 distributed random variables
– the distribution of the zis follows fX(zi; 1, λi)

ai =
(
σi(m)
σi(m0)

)2

, λi =
(
µi(m)− µi(m0)

σi(m)

)2

Weights Shifts
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Tracking – χχχ

• χ2 → χ

– The use of χ ≡
√
χ2 is more practical

– Can be approximated by a scaled non-central χ distribution: 1/αf(χ/α; r, λ)

α2 =
∑
i a

2
i∑

i ai
, r =

(
∑
i ai)

2∑
i a

2
i

− np, λ2 =
∑
i

λi

– the scale factor is α ≈ β(m0)/β(m)
– r is the ndof, np is the number of parameters, λ is usually small
⇒ that can be well approximated by a Gaussian

µχ = α

√
r − 1

2
+ λ2, σχ = α

√
1
2

• What to do?

– during track fitting determine χ with assuming m0

– since µχ and σχ depend on the ratio σi(m)/σi(m0), the distribution of χ will
be mass dependent
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Detectors – some trackers at LHC

• ATLAS

3 Si pixels, 4 Si strips,
and many (≤ 36) straws

• ALICE

2 Si pixels, 2 Si drifts, 2 Si strips,
and a large gas TPC

• CMS

3 Si pixels, 10 Si strips
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Detectors – properties

B Subdetector Radius of layers σrφ σz x/X0 ζrφ ζz Split

[T] [cm] [µm] [µm] [%] meas.

Exp A 2
pixels (barrel) 5.0, 8.8, 12.2 10 115 4 0.1 1

50strips (SCT)s 29.9, 37.1, 44.3, 51.4 17 580 4 0.1 3
straw (TRT) 56.3 – 106.6 (≤ 36 hits) 130 – 0.5 10 –

Exp B 0.4

pixels (SPD) 3.9, 7.6 12 100 1 0.2 2

12
drifts (SDD) 14.9, 23.8 35 23 1 0.3 0.2
strips (SSD)s 38.5, 43.6 15 730 1 0.1 7

[gas (TPC) 84.5 – 246.6 (≤ 159 hits) 900 900 10−3 103 − 104]

Exp C 3.8

pixels (PXB) 4.4, 7.3, 10.2 15 15 3 0.2 0.2

20
strips (TIB)s 25.5, 33.9 23/

√
2 230 4 0.1 0.8

strips (TIB) 41.8, 49.8 35 – 2 0.2 –

strips (TOB)s 60.8, 69.2 53/
√

2 530 4 0.1 2
strips (TOB) 78.0, 86.8, 96.5, 108.0 53, 35 – 2 0.2 –

Exp A = ATLAS, Exp B = ALICE, Exp C = CMS

• Sensitivity

– If the deviations are dominated by multiple scattering and
local position measurement: ζ = σpos/σms(m0)

– Shown for pions at p = 1 GeV/c
– Only silicons and straws contribute to result

Fast simulation results follow
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Results – χχχ distributions
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Results – performance
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fit – goodness of χ fit, ρχ – separation
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Results – separations

Exp A Exp B Exp C

• Separation power

– between two particles (m1 and m2) ρχ =
2[µχ(m1)− µχ(m2)]√
σ2
χ(m1) + σ2

χ(m2)

– with approximations ρχ ≈ 2
√

2r − 1
1− β(m)/β(m0)√
1 + [β(m)/β(m0)]2• Comments

– For not very low p and good local position resolution:
no dependence on magnetic field, radii, material thickness

– The mean and σ of the Gaussians are determined by p and mass via β
– Even at very low p the variances still stay the same
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Results – separation

π–p separation

0

2

4

6

8

10

0.5 1 1.5 2

ρ
χ

p [GeV/c]

Exp A
Exp B
Exp C

• Comments

– r is sometimes smaller than expected: low sensitivity measurements
many straws with ζrφ = 10 (Exp A); strip layers with ζz = 7 (Exp B)

– Outliers and their removal procedure introduces shifts in the fitted value of r
and in the resolution ρχ

– The steps are due to the changing number of crossed layers with varying p

Ferenc Siklér: Particle identification with a track fit χ2 17



Summary

• Particle identification with track fit χ2

– Tracker + magnetic field
– Perform global linear χ2 fit with a mass hypothesis
– One widely used option is Kalman-filter
– Knowledge of detector material and local position resolution
– Sensitivity to detector alignment
– Use for particle identification or check material budget

Performance is determined by the number of good sensitivity measurements

For details see NIM A paper http://dx.doi.org/10.1016/j/nima.2010.03.098
[arXiv:0911.2624]
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