TOP counter prototype R&D

Introduction

- TOP (Time Of Propagation) counter
 - Developing to upgrade the barrel PID detector
 - For super KEKB/Belle-II
 - L_{peak}~8x10³⁵/cm²/s, ~40 times higher than present
 - Need to work with high beam BG
 - To improve K/ π separation power
 - Physics analysis
 - B→ππ/Kπ, ργ, Kνν etc.
 - Flavor tag
 - Full reconstruction

Side view of Belle II detector

TOP counter

• <u>Position+Time</u> of arrival Cherenkov photons

Prototype development

Quartz radiator

- Made by Okamoto optics
 - Size; 91.5 x 40 x 2 cm³
 - Flatness: <1.2µm/m
 - Roughness: <0.5nm
- Check the quality for time resolution
 - Single photon pulse laser
 - 🗌 λ=407nm
 - MCP-PMT
 - Several incident position
- \rightarrow No degradation of time resolution
 - Enough quartz quality

Quartz radiator

- Two fused silica bars
- Focusing mirror (R=5m)
- Glued
 - UV cure type (NOA63)
 - Flatness; ~0.2mrad
 - Laser depth meter
 - Laser reflection at mirror

0.2mrad

• Supported by aluminum honeycomb board

MCP-PMT

- Micro-Channel-Plate
 - Tiny electron multipliers
 - Diameter ~10μm, length ~400μm
 - High gain
 - ~10⁶ for two-stage type
 - \rightarrow Fast time response

Pulse raise time ~500ps, TTS < 50ps

can operate under high magnetic field (~1T)

7

Multi-anode MCP-PMT

	·	Size	27.5 x 27.5 x 14.8 mm
		Effective area	22 x 22 mm(64%)
	4 4 4 4	Photo cathode	Multi-alkali
	4000	Q.E.	~20%(λ=400nm)
		MCP Channel diameter	10 µm
		Number of MCP stage	2
	<22(effective area), 27.5 mm	Correction efficiency	~60%
	← 27.5mm →	Anode	4 channel linear array
R&D with Hamamatsu		Anode size (1ch)	5.3 x 22 mm
		Anode gaps	0.3 mm

- Large effective area
- Position information

64% by square shape 4ch linear anode (5mm pitch)

Multi-anode MCP-PMT

- Single photon detection
- Fast raise time: ~400ps
- Gain: >1x10⁶ at B=1.5T
- T.T.S.(single photon): ~35ps at B=1.5T
- Position resolution: <5mm
 - Nucl. Instr. Meth. A528 (2004) 768.
- Basic performance is OK!
 - Same as single anode MCP-PMT
- <u>Semi-mass production (14 pieces)</u>

PMT performance (TTS)

- Test 14 pieces with pulse laser
 - single photon level
- Readout
 - New PMT base
 - HV divider, Fast AMP (1GHz, x20)

45

40

35

30

25

20

15

10

5

JT0003

JT0004

JT0005

JT0006

JT0009

JT0011

JT0012

JT0013

JT0014

JT0015

JT0023

JT0017

JT0030

JT0029

(sd)

LTS

- Discriminator (Philips, 350MHz)
- CAMAC TDC (25ps/bin)
- Result
 - 35~40ps
 - Stable

PMT performance (QE)

- Typical QE distribution
 - Multi-alkali p.c.
- Enough QE
 - Some of them are bad. Need to improve.

PMT module

- HV divider + AMP + Discriminator
- Small size (28mm^W)
- Prototype
 - Fast AMP (MMIC, 1GHz, x20)
 - Fast comparator (180ps propagation)

input

- CFD with pattern delay
- Performance
 - Test pulse
 - ~5ps resolution
 - MCP-PMT
 - □ **σ**<40ps
 - Working well

Chromatic dispersion effect

- Range of detectable wavelength of Cherenkov photons
 → Time fluctuation of the Cherenkov ring image
 → Time resolution depends on the propagation length.
- Check the degradation of time resolution by beam test

Beam test

- With electron beam at KEK Fuji test beam line
- Using real size quartz and 10 MCP-PMT
 - MCP-PMT: Multi-alkali p.c., C.E.=55%

Timing counter

- Based on our high resolution TOF
 - \Box σ =6.2ps with 6µm MCP-PMT, Cherenkov light in quartz and special electronics [NIM A560,303(2006)]
- Time difference between two counters
 - Check time resolution

10mm^{\(\phi\)} quartz + MCP-PMT

Ring image

Number of detected photons

- Normal incidence (90 deg.)
- Obtained number of photons as expected
- \rightarrow We can expect ~26 photons/event, if we use full 16 PMTs.
 - Normalized by active area (10 \rightarrow 16 PMTs)

Time resolution

250

200

150

100

50

200

Entries 500000

top 2D

Compare with the distribution expected by a _ simulation including PMT resolution and chromatic dispersion effect

Time resolution vs. propagation length

⊷ch4

• Check time resolutions

For several incidence condition and channel

- Data agrees well with simulation expectation.
 - \rightarrow Confirmed the level of chromatic dispersion effect

MCP-PMT lifetime

- Very high luminosity at Belle-II experiment
 - Expect 20 times more background rate than current Belle

	Belle	Belle-II
Luminosity (/cm²/s)	1×10^{34}	8 × 10 ³⁵
Num. of detected photons (/cm ² /s)	3400	68000
Output charge (mC/cm ² /year)	~6	~120

• Round-shape MCP-PMT with Al protection layer

MCP-PMT lifetime

- Square-shape MCP-PMT
 - Develop new version with Hamamatsu
 - Change of internal structure and cleaning method
 - Change to put Al protection layer on 2nd MCP
 - Recover correction efficiency $(35\% \rightarrow 60\%)$
 - Expect less effect of 1st MCP to lifetime
 - Because of 1/10³ smaller number of electrons
- Lifetime measurement
 - Light load by LED pulse (1~20kHz)
 - 20~50 p.e. /pulse
 - Relative efficiency, gain and TTS
 - By pulse laser at single photon level
 - Monitored by standard PMT

MCP-PMT lifetime

- Basic performance of new version
 - Q.E.vs.WaveLength XM0020 Entries 12640 χ^2 / ndf 128.5/14 # of event Q.E.(%) 24 p0 902.6 ± 24.5 TTS 22 p1 -0.6275 ± 0.0358 20 1.246 ± 0.036 p2 800 18 201 ± 9.7 p3 16 2.764 ± 0.146 p4 600 14 p5 4.019 ± 0.089 12 10 400 200 0 -20 -40 -30 -10 0 10 20 30 300 400 500 600 700 800 900 25ps/count Wavelength(nm)

Ch Number	1ch	$2\mathrm{ch}$	3ch	4 ch
Gain(Mean)	$1.2 imes 10^6$	$1.2 imes 10^6$	$1.2 imes 10^6$	$2.7 imes10^6$
TTS(1st peak)	$31.2\pm0.9 ps$	$32.9 \pm 1.1 ps$	$33.4 \pm 1.1 ps$	$31.3 \pm 1 ps$

Before aging

MCP-PMT lifetime result

• QE variation

- <10% drop at 350mC/cm² ; sufficient lifetime

For final system

• MCP-PMT

- 4x4 channel anodes
 - Reduced occupancy and improve number of detected photons
 - Already have good prototype PMTs
- Super-bialkali photo-cathode
 - Better QE than multi-alkali p.c.
 (20% → 30~35% at 400nm)

Electronics

- New ASIC chip (BLAB3) for very high-speed waveform sampling by Hawaii
- Beam test in this autumn

Summary

- R&Ds of TOP counter are in progress!
- Prototype developments
 - Quartz radiator
 - Enough quartz quality for single photon propagation
 - Multi-anode MCP-PMT
 - Developing with Hamamatsu photonics
 - Very good TTS (<40ps) and sufficient efficiency and gain
- Performance test with electron beam
 - Proper ring image, number of detected photons (16 photons)
 - Time resolution as expected by simulation
 - \rightarrow Confirmed level of chromatic dispersion effect
- MCP-PMT lifetime for Belle-II
 - Obtained sufficient lifetime (>3 Belle-II years) with improved version