

The Major Atmospheric Gamma-ray Imaging Cherenkov Telescope

Markus Garczarczyk Instituto Astrofisica de Canarias

RICH 2010 - Cassis - France

The MAGIC Telescopes

- A two-telescope stereoscopic Imaging Air Shower Cherenkov telescope system, observing gamma-ray initiated extended air showers, 2 x 17 m diameter
- Located on the Canary Island of La Palma, Spain
- In operation since fall 2004 (1 telescope), summer 2009 (2 telescopes)
- High-sensitivity PMT camera
 28% QE (MAGIC-I)
 32% QE (MAGIC-II)
- 2 GSampels/s DAQ
- Substantially lower energy threshold than other installations:
 - 55 GeV nominal
 - 25 GeV sum trigger
- Mono sensitivity: 1.6% Crab
- Stereo sensitivity: <1.0% Crab</p>
- Fast repositioning: <17 sec!

150 physicists23 institutes

ts es

Major Atmospheric Gamma Imaging Cerenkov Telescope

MAGIC Performance

- Energy resolution:
 ~25% (1 telescope) → ~15% (2 telescope)
- Angular resolution: Substantial (50%) improvement
- Overall sensitivity improved by a factor of 2-3
- Achieved sensitivity matches well the MC

M. Garczarczyk: MAGIC

MAGIC Performance

- Energy resolution:
 ~25% (1 telescope) → ~15% (2 telescope)
- Angular resolution: Substantial (50%) improvement
- Overall sensitivity improved by a factor of 2-3
- Achieved sensitivity matches well the MC
- Work at low energies ongoing

MAGIC-I Camera

- Different types of PMTs: 396 x 0.1° in the center 180 x 0.2° in the outer part
- Enhanced QE with special coating (25%)
- 3.5° FoV
- Upgrade in 2011

equal to increasing the reflector $^{\circ}$ 241m² \rightarrow 286 m²

M. Garczarczyk: MAGIC

MAGIC-II Camera

Design criteria:

- High photon detection efficiency
- 500 MHz bandwidth for entire signal chain
- Modular design
- Clusters of 7 pixels
- Easy replacement
- Upgrade possibility to higher QE photosensors: HPD, SiPM
- 1039 identical 0.1° pixels
- Round configuration
- 3.5° FoV (similar to MAGIC-I)

MAGIC-II Camera: PMT Clusters

- Hamamatsu R10408 PMTs
- Peak QE typically 32% (\approx 15% higher than MAGIC-I)
- FWHM ≈2.3 ns
- Cockroft-Walton HV generator in PMT socket
- Electronics bandwidth: 700 MHz, dynamical range: 800

Principle:

- Vacuum tube operated at 6-8 kV
- Avalanche diode (~300 V)

Advantages:

- Good single photoelectron resolution
- High QE GaAsP Photocathode (QE>50%)
- High photoelectron collection efficiency (~100%)
- Low afterpulse rate (~300 times less than PMTs)

- HPD clusters have the same geometrical shape as PMT clusters
 → easy to replace
- Fact: $E_{th} 25 \text{GeV} \rightarrow 15 \text{GeV}$ using HPDs and analog sum trigger

APD HV generator

Cone

supply

M. Garczarczyk: MAGIC

- HPD clusters have the same geometrical shape as PMT clusters \rightarrow easy to replace
- Fact: E_{th} 25GeV \rightarrow 15GeV using HPDs and analog sum trigger

Step 1 Field test 6 clusters (42 HPDs) in MAGIC-II camera (first cluster already installed)

VCSEL

8kV power supply

Amplifier and APD HV generator

Winston HPD Cone

M. Garczarczyk: MAGIC

- HPD clusters have the same geometrical shape as PMT clusters \rightarrow easy to replace
- Fact: E_{th} 25GeV \rightarrow 15GeV using HPDs and analog sum trigger

Step 1 Field test 6 clusters 427 HPDs (42 HPDs) in in MAGIC-II MAGIC-II camera camera (first cluster already installed)

Step 2

Cone

APD HV generator

supply

Standard Trigger of MAGIC

4-fold logic coincidence of a compact next neighbor group of pixels
Each pixel has a trigger threshold of 5-6 photoelectrons

Trigger threshold 50–60 GeV

Gamma event

Hadron event

Hadrons (background) dominate over gammas (signal). They must be rejected statistically in the analysis.

Analog sum trigger concept

- Summation of 18 pixel groups in 24 patches in a ring-shape
- Idea: a) Summing up all single photons increases signal to noise ratio
 - b) Fluctuations of shower larger than Poissonian fluctuations of NSB background
- PMT afterpulse problem: high noise rate
- Solution: clipping of signal

Analog sum trigger concept

- Summation of 18 pixel groups in 24 patches in a ring-shape
- Idea: a) Summing up all single photons increases signal to noise ratio
 - b) Fluctuations of shower larger than Poissonian fluctuations of NSB background
- PMT afterpulse problem: high noise rate
- Solution: clipping of signal

- ✓ Very simple
 ✓ Robust
- ✓ Lower power consumption (100-200 Watt)
- ✓ Low cost
- ✓ And in addition lower threshold!

Performance: Standard vs. sum trigger

- Pulse width of sum signal: 2.5–3.0 ns (Signal/NSB ratio)
- Topology of trigger region (optimal for 10-20 GeV showers)
- Improvement at 20 GeV by factor 6
- Threshold energy at 30 GeV in respect to 60 GeV with 4NN
- Prototype to prove of principle ...

Crab pulsar

MAGIC Collaboration. Science 322, 1221 (2008)

M. Garczarczyk: MAGIC

RICH 2010 - Cassis - France

1

1

1

Mechanism of pulsed GeV radiation?

- Huge magnetic field ~10⁸-10⁹ T
- Exact mechanism of radiation unknown
 - Synchrotron-Curvature radiation & inverse Compton scattering
 - Polar cap model:
 - Formation of vacuum gap close to neutron star surface
 - Vacuum density below Julian-Goldreich density allows acceleration of particles
 - Absorption of γ -rays via magnetic pair production \rightarrow superexp. cutoff

Outer gap model

- Formation of vacuum gap in outer region
- Absorption via photon-photon collisions (magnetic field too weak for magnetic pair production) → exp. cutoff
- Particles escape at light cylinder
- Slot gap model (from surface to high altitude)

Mechanism of pulsed GeV radiation?

Consequence of MAGIC observation:

- Assuming a magnetic field of 3.8×10⁸ T, can limit to distance to the surface of the neutron star >4 stellar radii
- High cutoff (20 GeV) dismisses polar-cap models

EGRET Gamma-Ray Pulsars

- 2000 pulsars known, but only 7 at γ -rays !
- Typically 2 peaks in pulse profile in gamma-rays energy
- Crab only pulsar for which the phases are the same at all wavelengths

Fermi Gamma-Ray Pulsars

• Energy range right below MAGIC

Sharp cutoff expected at a few GeV

- Cutoff shape and energy contains information about the acceleration and radiation mechanism and the location of radiation
- Instrument with sensitivity well below 50 GeV needed

MAGIC readout system

- 2 Gsamples/s → 0.5 ns time slices
 - Shorter pulses → less NSB
 - Better time resolution

- 10 bits FADCs (MAGIC-I), 12bits DRS2 (MAGIC-II)
 → upgrade to DRS4 for both telescopes next year
- 80 slices window
- Integrated digital modules to record GPS time, trigger pattern, etc.

Domino Ring Sampler

Analog sampling in a switched capacitor array

- Freely propagating rotating sampling signal
- Signal opens a series of switches and charges the capacitors
- Slow 40 MHz readout of the stored signal and external digitalization

DRS2 pro

- Low power consumption @ high #channels
- Synchronous sampling of all channels

DRS2 contra

- residual charge effect, charge leakage
- needs frequent calibration
- mismatch of transistors, T dependent

Upgrade to DRS4

- More bandwidth, linearity etc.
- Lower power consumption

Why Low Energy Threshold? AGN - GRB

MAGIC Collaboration, Science 320 (2008) 1752

γνήε

Extragalactic Background Light

EBI

blazar

3C 279

IACT

M. Garczarczyk: MAGIC

3C 279: A Famous Blazar

M. Garczarczyk: MAGIC

3C 279: What's the relevance?

MAGIC Collaboration, Science 320, 1752 (2008)

- z=0.536! Major jump in redshift of VHE sources
- First FSRQ in TeV gamma-rays: All source classes of the "blazar sequence" detected in VHE
- Infer gamma-ray horizon
- Probe evolution of EBL
- With enough statistics derive Ω_λ and Ω_m

GRB observations with MAGIC

- Highest priority observations for MAGIC
- Full automatic reaction to GCN alerts
- SWIFT BAT + FERMI GBM triggers accepted
- 13 s delay between T_0 and receipt of the alert
- MAGIC repositioning: 17 s for 180° Az movement
- Full stereo observation + sum trigger in MAGIC-I

GRB observations with MAGIC

- Full automatic reaction to GCN alerts
- SWIFT BAT + FERMI GBM triggers accepted
- 13 s delay between T_0 and receipt of the alert
- MAGIC repositioning: 17 s for 180° Az movement
- Full stereo observation + sum trigger in MAGIC-I

What is our motivation?

- No significant excess in 60 MAGIC GRB follow-up observations up to now
- Many GRBs are dark at VHE (z>2)
- Need to relay on external triggers, 10% duty cycle
- + Large fraction are detected at HE (LAT
- + MAGIC sensitivity higher by one magnitude than LAT
- Just need more luck

What is our motivation?

- No significant excess in 60 MAGIC GRB follow-up observations up to now
- Many GRBs are dark at VHE (z>2)
- Need to relay on external triggers, 10% duty cycle
- + Large fraction are detected at HE (LAT
- + MAGIC sensitivity higher by one magnitude than LAT
- ⇒Just need more luck

Summary

MAGIC is the Cherenkov telescope with the currently lowest energy threshold

- ~55 GeV with standard trigger
- ~25 GeV with analog sum trigger
- Observations below 200 GeV are important particularly for:
 - Pulsar physics: acceleration models
 - Blazars at cosmological distances: EBL, cosmology
 - Detection of highest–energy emission in GRBs
 - Cross-calibration with Fermi-LAT
 - Measuring the complete HE peak with Fermi-LAT
- Novel technologies to reach the lower energy threshold:
 - Large (>240 m²) parabolic reflector, high reflectivity, controlled focussing
 - Fast signal sampling
 - Analog sum trigger
 - Novel photo sensors