# GasToF: Picosecond Resolution Time-of-Flight Detector

L. Bonnet, J. Liao, T. Pierzchala, <u>K. Piotrzkowski</u> and N. Schul (UCLouvain)

As introduction: Motivation for forward proton timing at LHC

GasToF: Concept, design and prototypes

Laser test bench studies and beam tests

Outlook

RICH 2010, Cassis (France)



## **New forward detectors:**

Brief history:

May'05: R&D proposal acknowledged by LHCC

June'08: FP420 Report

Fall'08: First proposals to CMS/ATLAS

In 2009: Adding detectors @220/240 m







The FP420 R&D Project: Higgs and New Physics with forward protons at the LHC

M. G. Albrow<sup>1</sup>, R. B. Appleby<sup>2</sup>, M. Arneodo<sup>3</sup>, G. Atoian<sup>4</sup>, I.L. Azhgirey<sup>5</sup>, R. Barlow<sup>2</sup>, I.S. Bayshev<sup>5</sup>, W. Beaumont<sup>6</sup>, L. Bonnet<sup>7</sup>, A. Brandt<sup>8</sup>, P. Bussey<sup>9</sup>, C. Buttar<sup>9</sup>, J. M. Butterworth<sup>10</sup>, M. Carter<sup>11</sup>, B.E. Cox<sup>2,+</sup>, D. Dattola<sup>12</sup>, C. Da Via<sup>13</sup>, J. de Favereau<sup>7</sup>, D. d'Enterria<sup>14</sup>, P. De Remigis<sup>12</sup>, A. De Roeck<sup>14,6,+</sup>, E.A. De Wolf<sup>6</sup>, P. Duarte<sup>8,†</sup>, J. R. Ellis<sup>14</sup>, B. Florins<sup>7</sup>, J. R. Forshaw<sup>13</sup>, J. Freestone<sup>13</sup>, K. Goulianos<sup>15</sup>, J. Gronberg<sup>16</sup>, M. Grothe<sup>17</sup>, J. F. Gunion<sup>18</sup>, J. Hasi<sup>13</sup>, S. Heinemeyer<sup>19</sup>, J. J. Hollar<sup>16</sup>, S. Houston<sup>9</sup>, V. Issakov<sup>4</sup>, R. M. Jones<sup>2</sup>, M. Kellv<sup>13</sup>, C. Kenney<sup>20</sup>, V.A. Khoze<sup>21</sup>, S. Kolya<sup>13</sup>, N. Konstantinidis<sup>10</sup>, H. Kowalsk<sup>22</sup>, H.E. Larsen<sup>23</sup>, V. Lemaitre<sup>7</sup>, S.-L. Liu<sup>24</sup>, A. Lyapine<sup>10</sup>, F.K. Loebinger<sup>13</sup>, R. Marshall<sup>13</sup>, A. D. Martin<sup>21</sup>, J. Monk<sup>10</sup>, I. Nasteva<sup>13</sup>, P. Nemegeer<sup>7</sup>, M. M. Obertino<sup>3</sup>, R. Orava<sup>25</sup>, V. O'Shea<sup>9</sup>, S. Ovyn<sup>7</sup>, A. Pal<sup>8</sup>, S. Parker<sup>20</sup>, J. Pater<sup>13</sup>, A.-L. Perrot<sup>26</sup>, T. Pierzchala<sup>7</sup>, A. D. Pilkington<sup>13</sup>, J. Pinfold<sup>24</sup>, K. Piotrzkowski<sup>7</sup>, W. Plano<sup>13</sup>, A. Poblaguev<sup>4</sup>, V. Popov<sup>27</sup>, K. M. Potter<sup>2</sup>, S. Rescia<sup>28</sup>, F. Roncarolo<sup>2</sup>, A. Rostovtsev<sup>27</sup>, X. Rouby<sup>7</sup>, M. Ruspa<sup>3</sup>, M.G. Ryskin<sup>21</sup>, A. Santoro<sup>29</sup>, N. Schul<sup>7</sup>, G. Sellers<sup>2</sup>, A. Solano<sup>23</sup>, S. Spivey<sup>8</sup>, W.J. Stirling<sup>21</sup>, D. Swoboda<sup>26</sup>, M. Tasevsky<sup>30</sup>, R. Thompson<sup>13</sup>, T. Tsang<sup>28</sup>, P. Van Mechelen<sup>6</sup>, A. Vilela Pereira<sup>23</sup>, S.J. Watts<sup>13</sup>, M. R. M. Warren<sup>10</sup>, G. Weiglein<sup>21</sup>, T. Wengler<sup>13</sup>, S.N. White<sup>28</sup>, B. Winter<sup>11</sup>, Y. Yao<sup>24</sup>, D. Zaborov<sup>27</sup>, A. Zampieri<sup>12</sup>, M. Zeller<sup>4</sup>, A. Zhokin<sup>6,27</sup>

FP420 R&D Collaboration

#### JINST 4 (2009) T10001

### High Precision Spectrometers: Motivation (1000 Tm bending power $\rightarrow \delta p/p^{2.10^{-4}}$ )

Light Higgs boson case is compelling more than ever

– exclusive production provides unique information:

- Higgs quantum numbers (spin-parity filter)
- Direct & precise H mass measurement (event-by-event);
  M<sub>H</sub> resolution of ≈ 2 GeV → direct limits on Higgs width
- Possibility of detecting H  $\rightarrow$  bb mode

Detection of SM Higgs boson requires (very) <u>large</u> luminosity ( $\sigma_{obs} \approx 0.1-0.2$  fb) and challenging timing detectors to keep backgrounds low (S/B $\approx$ 1:2); in case of BSM physics HPS could provide <u>discovery</u> channels for Higgs bosons

In addition, HPS offers access to 'guaranteed' and unique studies like electroweak physics in two-photon interactions, or new QCD phenomena in exclusive production, for example.

RICH 2010



Observation of <u>Exclusive</u> Charmonium Production and  $\gamma\gamma \rightarrow \mu + \mu$ - in pp Collisions at  $\sqrt{s} =$ 1.96 TeV



Previous Story / Volume 23 archive

Phys. Rev. Lett. 102, 242001 (issue of 19 June 2009) Title and Authors

24 June 2009





### A Higgs Boson without the Mess

Particle physicists at CERN's Large Hadron Collider (LHC) hope to discover the Higgs boson amid the froth of particles born from proton-proton collisions. Results in the 19 June *Physical Review Letters* show that there may be a way to cut through some of that froth. An experiment at Fermilab's proton-antiproton collider in Illinois has identified a rare process that produces matter from the intense field of the strong nuclear force but leaves the proton and antiproton intact. There's a chance the same basic interaction could give LHC physicists a cleaner look at the Higgs.

A proton is always surrounded by a swarm of ghostly virtual photons and gluons associated with the fields of the electromagnetic and strong nuclear forces. Researchers have predicted that when two protons (or a proton and an antiproton) fly past one another at close range, within



CERN

**Higgs machine.** If CERN's Large Hadron Collider (LHC) can create Higgs bosons, a handful may appear in rare "exclusive" reactions that don't destroy the colliding protons--similar to a reaction now observed at Fermilab. CERN's ATLAS and CMS teams are considering adding equipment to their detectors (CMS shown here) to look for such events (click image

### Forward proton detectors @ (high *£*) LHC

#### JINST 4 (2009) T10001

- Installation of Si detectors in cryogenic region of LHC, i.e. cryostat redesign needed
- Strict space limitations rule out Roman Pot technology, use movable beam-pipe instead
- Radiation hardness required of Si is comparable to those at SLHC, use novel 3-D Silicon technology
- To control pile-up background use very fast timing detectors ( $\sigma \sim 10$  ps)

Acceptance in fractional energy loss (at nominal LHC  $\beta^* = 0.5$  m): 0.002 < ξ < 0.02





RICH 2010

# Moving Hamburg pipe concept

Successfully used at HERA: Robust and simple design, + easy access to detectors

Motorization and movement control to be cloned from LHC collimator design

JINST 4 (2009) T10001

K. Piotrzkowski



# Picosecond ToF detectors @ LHC

At <u>nominal</u> luminosity event rate so high @ HPS that accidental overlays (= triple coincidence of an interesting event in central detector + two protons from single diffraction) become major background!

Use very fast ToF detectors to reduce it by matching *z*-vertex from central tracking with *z*-by-timing from proton arrival time difference: LHC vertex spread is ~50 mm  $\rightarrow$  to reduce significantly backgrounds one needs < 10ps time resolution ( $\rightarrow$  2 mm *z*-vertex resolution)!



h-jet

Proposed fast (& small ~10 cm<sup>2</sup>) timing detectors: Čerenkov radiators + fastest MCP-PMTs

- Challenging environment  $\rightarrow$  pushing MCP-PMT performances to limits:
- $\rightarrow$  High event rates, up to several MHz
- $\rightarrow$  Running MCP-PMTs close to maximal anode currents
- $\rightarrow$  Large annual total collected anode charges (up to 10 C/cm<sup>2</sup>)

GasToF: Gas ( $C_4F_{10}$ ) Čerenkov detector with very fast light pulse (< 1 ps!)  $\rightarrow$  resolution limited by TTS of MCP-PMTs and electronics

Quartic: Quartz based Čerenkov with fine segmentation – multi-hit capability

RICH 2010

### Forward proton trajectories @ LHC



Thanks to very high energy and low scattering angles path length differences are very small for forward protons, below 100  $\mu$ m! It means that it starts affecting *z-by-timing* only for sub-picosecond measurements!





- Intrinsically very fast
- Light detector can be used with(in) tracking
- Simple (small chromacity) modeling with ray tracing
- Robust and radiation hard



Our 'workhorse': very robust with timing resolution of ~30 ps (due to TTS)  $\rightarrow$  L. Bon Acta Phys. Pol. B38 (2007) 447; FP420 Collab., JINST 4 (2009) T10001

#### **Simulations with** Photonis 25 µm MCP-PMT **(T. Pierzchala: raytracing)**



K. Piotrzkowski



Compact MCP-PMT Series Featuring Variety of Spectral Response with Fast Time Response

#### FEATURES

- High Speed Rise Time: 150ps T.T.S. (Transit Time Spread)<sup>1</sup>): ≤ 25ps(FWHM)
- Low Noise

Compact Profile
 Useful Photocathode: 11mm diameter
 (Overall length: 70.2mm Outer diameter: 45.0mm)





# Short GasToF (20cm), reflective beam-wall, R3809U-58 PMT, protons on axis:

#### **Nicolas Schul**



15





1 pe, 2 pe, ...

#### Using CFD algo: Measure spread of time difference (~distance between PMTs)



#### ULTRA FAST PHOTOMULTIPLIERS





|                     | PMT210          | PMT212          | PMT325     | PMT340 |
|---------------------|-----------------|-----------------|------------|--------|
| Anode Size          | 10 mm           | 12 mm           | 25 mm      | 40 mm  |
| Electron Gain       | 10 <sup>6</sup> | 10 <sup>6</sup> | 107        | 107    |
| Peak/Valley         | 2:1             | 1.5:1           | 2:1        | 2:1    |
| Dynamic Range cps   | 40,000          | 40,000          | 40,000     | 40,000 |
| Pulse Rise Time     | 100 ps          | 100 ps          | 300 ps     | 500 ps |
| Pulse FWHM          | 170 ps          | 170 ps          | 800ps-1 ns | 1 ns   |
| Transit Time Jitter | 30 ps           | 30 ps           | 100 ps     | 100 ps |
| MCP Pore Size       | 5/6             | 5/6             | 10/12      | 10/12  |

#### Received from PHOTEK two 3 μm pore MCP-PMTs...

...so fast that had to upgrade to yet faster scope...

RICH 2010

Photek



Example of time difference measurements of two GasToF detectors with Photek MCP-PMTs ;

Signal wave-forms were registered on fast scope and CFD algorithms were applied to determine signal arrival times

Time difference spread corresponds to < 10 ps time resolution per detector



K. Piotrzkowski

Dedicated picosecond laser test setup was developed to characterize fastest MCP-PMTs from Photek and Hamamatsu – using Agilent scope with 8 GHz BW and 40 GSamples/s

| PILxxx | wavelength<br>(nm) | tolerance<br>(nm) | spectral width<br>(nm) | pulse width<br>(ps) |
|--------|--------------------|-------------------|------------------------|---------------------|
| PIL037 | 375                | ±10               | < 7                    | < 60                |
| PIL040 | 408                | ± 10              | < 7                    | < 45                |
|        | 1                  |                   |                        | FWHM                |





**RICH 2010** 

## PiLas laser test setup runs up to 1 MHz repetition rate at 408 nm and using 8 GHz Agilent scope with 40 GSa/s





#### Waveforms and anode charge distribution from Hamamatsu R 3809U-50

### **Fast Constant Fraction Discriminator**

#### L. Bonnet (UCLouvain)

#### Development of LCFD

- 12 channel NIM units
- mini-module approach tuned to PMT rise time (HPK/Photek vs Photonis)
- Good performance:
  < 10 ps resolution for 4</li>
  or more phe's (A. Brandt)





# Remote control for threshold



## GasToF: Outlook

• Continue R&D toward 1 ps ToF detectors (also interesting for PID at test beams and fixed target experiments)

• Very exciting, long-term development program is crystallizing

• Start design and prepare tests of GasToF detectors with multianode MCP-PMTs – with working mode 1 phe per channel – will check its <u>multi-hit</u> and high rate performance; NB: need fast multi-channel electronics (is CERN HPTDC chip enough?)

• System performance studies started – need < 5 ps precise reference clock distribution over ~1 km

 Addressing in detail high rate/lifetime issues (NB: MCP-PMT radiation hardness already tested)

## GasToF: Outlook

High rate/lifetime issues – two scenarios/setups:

- 1. Medium luminosity (~ $10^{33}$  cm<sup>-2</sup>s<sup>-1</sup>):
- Use one channel GasToF (with < 1 cm<sup>2</sup> PC) and 4–5 pe signal
- No multi-hit capability event pileup low (double hit ~2%)
- Photon counting rate ~ 4 MHz/cm<sup>2</sup>
- Total annual anode charge (assuming gain 3.10<sup>5</sup>) is ~2 C/cm<sup>2</sup>

2. High luminosity ( $^{10^{34}}$  cm<sup>-2</sup>s<sup>-1</sup>):

- Use multi-channel GasToF (with ~12 cm<sup>2</sup> PC) and 8–10 pe total signal, 1 pe single anode signal

- Multi-hit capability event pileup high (double hit ~20%)
- Extra bonus: Position reconstruction from disc pattern to ~2 mm
- Photon counting rate ~5 MHz/cm<sup>2</sup>
- Total annual anode charge (assuming gain 5.10<sup>5</sup>) is ~5 C/cm<sup>2</sup>

GasToF strengths:

- Large part of light pulse on PC around 200 nm QE drop much suppressed
- Some loss of QE can be easily compensated by increasing gas pressure

(NB. Dark noise not relevant due to high signal rates & only 1 ns wide 'active' window)

## Summary

- Proposal of HPS project for New Physics with forward detectors is well advancing requires developing small but challenging detectors
- Final GasToF designs for (single anode) HPK and Photek MCP-PMTs are ready
- Modeling GasToF performance and MC simulation well developed
- Laser test setup running (with 8 GHz BW 40 GSa/s scope), and well understood
- Future tests clearly defined many new results soon to come, also from test beams!
- HPS Technical Design Report in preparation

#### STAY TUNED!

RICH 2010

## Extra slides

### Forward proton acceptance @ $\beta^* = 0.5$ m



### LHC beam-line close to 240 m



#### Available space of ~12 m!

From Detlef:

- Space above quench resistors (QRs) is not reserved yet
- Space between QR and beam pipe ~ 25 cm, and space

between QRs ~ 50 cm

No problem of heat load



#### Optimal places for tagging Central Exclusive Production (CEP) at LHC: @ 220/240m and 420m from IP



## Moving pipe: Detector 'pockets'

Prepared for beam tests:

Thin 300 µm entrance and side windows by electro-erosion



iotrzkowski

### HPS proposal: Adding HPS240 detectors

 Tagging at 420m and 240(220)m is complementary – together ~ 0.2–10% energy loss range is covered !

- This leads to significantly higher tagged cross sections
- Both 220 and 240 m locations are 'warm&free' just bare beam-pipes

 At IP5, locations at 220 m are occupied by TOTEM -> go 240m (as ALFA in ATLAS) - it is still possible to send triggers to CMS!

 One does not need to modify the LHC beamline -> can be done before HPS420 and be treated as a *proof-of-principle* project + interesting physics as a bonus