Other PID techniques

J. Va'vra, SLAC

Content

- ATLAS TRT first results

• dE/dx

- Cluster counting in central drift chamber for SuperB?

• TOF

- Detector candidates for TOF: MCP-PMTs, Multi-gap RPCs, G-APDs

- ALICE, RHIC and CBM and their glass multi-gap RPCs

- LHC ATLAS & CMS forward diffractive pp scattering R&D

- SuperB R&D: Pixilated TOF, DIRC-like TOF

Comparison of various PID techniques

• TOF & dE/dx work mainly in low momentum region.

• TRD is useful for the electron identification at higher momenta.

Challenges of new experiments

SuperB & BelleII:

- L ~ 10^{36} cm⁻² sec⁻¹

- Total neutron doses: ${\sim}10^{12}\,/cm^2$
- Total Gamma doses : $\sim 5x10^{11}$ /cm²
- Total charged particle doses : ${\sim}5x10^{11}\,/cm^2$
- Bhabha rate per entire detector: ~100 kHz

LHC ATLAS central region

- Total neutron doses: $\sim 10^{14}$ /cm² (after 10 years)
- Total charged particle doses : ~10 MRads
- Total charged particle rate : $\sim 10^5$ /cm² sec
- Total photon rate : $\sim 10^6$ /cm² sec
- Total neutron rate : $\sim 10^6$ /cm² sec

(~1 m from IP)

ALICE Pb + Pb collisions:

- Multiplicity of tracks: ~10,000/event
- Rate: ~50-100 Hz/cm²

LHC pp diffractive scattering

- Total neutron doses per year: $\sim 10^{12}$ /cm²
- Total charged particle doses per year: ${\sim}5x10^{11}/{cm^2}$
- Proton rate in the inner radiator: ~10-15 MHz/cm²

ATLAS ALICE Overall comparison

TRD Principle

ATLAS Collaboration, ATLAS Inner Detector Technical Design Report, Volume 2, ATLAS TDR 5, CERN/LHCC/97-16 (30 April 1997).

Example of ATLAS TRT in LHC

A. Romaniuk, TRD Workshop, Bari, 2001

J. Va'vra, RICH 2010, Cassis, France

5/3/2010

ATLAS TRT PID performance

• Only high energy electron has a sufficiently high value of γ to produce the significant number of the TRD X-rays.

Pion rejection in TRD detectors

- An order of magnitude in rejection power against pions is gained each time the TRD detector length is increased by ~ 20 cm.
- A typical pion/electron rejection factor is ~ 100 for ~ 40 cm of detector length.

Experiment	Gas	L (cm)	No of channels	$\pi_{ m rejection}$
HELLIOS (NA34)	Xe-C ₄ H ₁₀	70	1744	2000
H1	Xe-He-C ₂ H ₆	60	1728	10
NA31	Xe-He-CH ₄	96	384	70
ZEUS	Xe-He-CH ₄	40	2112	100
D0	Xe-CH ₄	33	1536	50
NOMAD	Xe-CO ₂	150	1584	1000
kTeV	Xe-CO ₂	144	~10k	250
PHENIX	Xe-CH ₄	4	43k	300
PAMELA	Xe-CO ₂	28	964	50
AMS	Xe-CO ₂	55	5248	1000
ATLAS	Xe-CF ₄ -CO ₂	51- 108	425k	100
ALICE	Xe-CO ₂	52	1.2 M	200

- Cluster counting

Cluster counting

Original idea to use cluster counting for dE/dx PID by A.Walenta, IEEE NS-26, 73(1979), others studies: Lapique, F. Piuz, A. Breskin's group, etc. - all doing it with a Time-Expansion-Chamber (TEC).

Can we do it in a SuperB drift chambers ? He-based gas plays a role of TEC.

He: 5.5 ± 0.9 clusters/cm & iC₄H₁₀: 70 ± 12 clusters/cm Need to choose the right mix to prevent a pile-up.

Typical dE/dx resolution in typical drift chambers for 1cm in Ar gas at 1 bar: FWHM/dE/dx_{most probable} ~ 100%

G. Cataldi et al., NIM A 386 (1997) 458-469 What do we expect from cluster counting? $N_{primary} \sim 35/2.6$ cm-long drift cell at 1 bar in 95% He+5% iC₄H₁₀ gas: FWHM/ dE/dx_{most probable} = 2.35 $\sqrt{(N_{primary})/N_{primary}} \sim 40\%$

• So far nobody has succeeded to do this in a large experiment. KLOE experiment did a lot of R&D on this. SuperB might to try it.

KLOE drift chamber R&D

G. Cataldi, F. Grancagnolo, S. Spagnolo, Nucl. Instr.&Meth A 386 (1997) 458-469

- For a square drift cell with 2.6 cm side, filled with 95% He + 5% iC₄H₁₀ gas, the test measured ~35 clusters/cell. The distribution has a tail due to delta electrons, which can be handled by a truncated mean method.
- Data analysed with: 1.7 GHz bandwidth preamplifier, a digital sampling oscilloscope, 8 bits, 1 GHz, 2 GSa/s
- Number of randomly distributed clusters N along a track of length L fluctuates around mean of $N_o = L N_{primary clusters}$ with a probability described by Poisson distribution: $P(N) = e^{-No} (N_o)^N / (N_o!)$. Its Gaussian limit is achieved as soon as the mean value approaches $N_o \sim 20$, which is of the order of $\sim 1 \text{ cm}$ track length for most of the commonly used gas mixtures.

KLOE drift chamber R&D

G. Cataldi, F. Grancagnolo, S. Spagnolo, Nucl. Instr.&Meth A 386 (1997) 458-469

• Their conclusion:

- one needs a preamplifier with ~ 500MHz BW
- sampling rate of ~1.25 GSa/sec
- Memory needs to be deep ~2-3 µsec !!!
- ADC dynamical range of 8 bits

(for a concrete example of square drift cell with **2.6 cm** side, filled with a gas having $N_{\text{primary clusters}} \sim 12/\text{cm/m.i.p.}$, and a drift velocity $\sim 1\text{cm/\mu s} \& \sigma_{\text{long.diffusion}} \sim 170\mu\text{m}$)

Example: π/K separation in SuperB forward endcap

J. Va'vra, dE/dx part: A453(2000)262-272

~1.8 m flight path:

J. Va'vra, RICH 2010, Cassis, France

J.V., 4.17.2010

Zoom into a region of ~1GeV/c

J. Va'vra

~1.8 m flight path:

ALICE
STAR
CMB
ATLAS & CMS
Super B R&D

TOF PID technique

Principle is simple:

 $\Delta t = (L_{path}/c) * (1/\beta_1 - 1/\beta_2) = (L_{path}/c) * [\sqrt{(1 + (m_1 c/p)^2)} - \sqrt{(1 + (m_2 c/p)^2)}] = 0$

 $\sim (L_{path}c/2p^2) * (m_1^2 - m_2^2)$

Therefore expected particle separation:

$$N_{\sigma} = [(L_{path}c/2p^2) * (m_1^2 - m_2^2)] / \sigma_{Total}$$

Example of contributions to the timing resolution:

$$\sigma_{\text{Total}} \sim \sqrt{\left[(\sigma_{\text{TTS}} / \sqrt{N_{\text{pe}}})^2 + (\sigma_{\text{Chromatic}} / \sqrt{N_{\text{pe}}})^2 + \sigma_{\text{Electronics}}^2 + \sigma_{\text{Track}}^2 + \sigma_{\text{Total}}^2 \right]}$$

 $\begin{array}{l} \sigma_{Electronics} & - \mbox{ electronics contribution} \\ \sigma_{Chromatic} & - \mbox{ chromatic term} = f \mbox{ (photon path length)} \\ \sigma_{TTS} & - \mbox{ transit time spread} \\ \sigma_{Track} & - \mbox{ timing error due to track length } L_{path} \\ \sigma_{T0} & - \mbox{ start time (often dominated by the bunch length)} \\ \mbox{ etc.} \end{array}$

Detector candidates for TOF

- Multi-gap glass RPCs = MRPC
- MCP-based PMTs
- G-APDs

Relative comparison of pulses

Standard PMT:

MaPMT:

MCP-PMT or MRPC:

200	11	i
IIS 1	/(1	IV
	ns	ns/d

1ns/div

1ns/div

РМТ	Eff. gain	Pulse FWHM	I _{Single el. pulse}	$V_{Single el. pulse}(50\Omega)$
Standard PMT	~107	~ 3.5 ns	$\sim 500 \ \mu A$	~ 23 mV
MaPMT	~10 ⁶	~ 1.5 ns	~ 100 µA	~ 5 mV
MCP-PMT	~5x10 ⁵	~ 400 ps	~ 200 µA	~10 mV
MRPC	~107	~ 1000 ps	$\sim 2000 \ \mu A$	~10 mV*

 $I_{single \ el. \ pule} \sim Gain \ x \ electron/FWHM(pulse \ width), V_{single \ el. \ pule} \sim I_{single \ el. \ pule} \ x \ 50 \ \Omega, \ * \ typical \ signal \ observed$

• MCP-PMT, MaPMT and MRPC need a fast amplifier.

5/3/2010

MRPC

- ALICE experiment at LHC
- STAR experiment at RHIC
- CBM experiment at FAIR

Why many gaps in MRPC ?

C. Williams, talk in Orsay, 2009, and Katayoun, Ph.D. thesis, 2010

Townsend law: $N = N_0 e^{\alpha x}$

Idea of this detector:

- High gain operation, limited by a space charge.
- To prevent sparking make very tiny gaps to stop avalanche growth.
- Electron has to be produced very near cathode to get a large enough signal.
- To get a high overall efficiency one needs many gaps.

ALICE MRPC C. Williams, talk in Orsay, 2009 and private discussion at CERN, 2010. Side view (10 gaps/MRPC): Top view (Fishing line spacer): H.V. connector Aluminium box Gas connector Cathode pickup (-ve HV) electrodes 7177 electrically floating Fully Differential signal to front-end electronics differential ve HV Readout Readout electronics electronics output to get electrically floating a good S/N: Anode pickup ve HV electrode Fishing line spacer I H.V. connector Gas connector **Parameter** Value 10 / MRPC & 160.000 total in ALICE Total number of active gaps per MRPC & total in ALICE Gap size (controlled by a fishing line) 250 µm 1200 x 72 mm² & 150 m² in ALICE Glass size in one MRPC & total in ALICE 25 x 36 mm² & 96 pads /MRPC Pad geometry & number of pads/MRPC Gas $90\% C_2F_4H_2 + 5\% iC_4H_{10} + 5\% CF_6$ Signal rise time ~500 ps ~ 2pC / MRPC **Average total charge** ~ 100 Hz/cm² (max rate: ~ $1kHz/cm^{2}$) **Typical counting rate** Total mass per MRPC with 10 gaps ~6% of r.l. / particle passage **Magnetic field in ALICE** 16 kG **Pulse height correction** Leading & trailing edge timing (TOT)

Note: Voltages applied only to outer electrodes, the rest is floating => easy to build

Boxes contain MRPC modules:

~ 160,000 electronics channels ~ 150 m² total area in ALICE

ALICE: power of combining dE/dx & TOF

F.Noferini, Moriond, 2010

pp colisions at 900 GeV

ALICE: MRPC beam test results

C. Williams, talk in Orsay, 2009 and private discussion at CERN, 2010.

Obtained a resolution: 40-50 ps
TOF_{MRPC1} - TOF_{MRPC2}:

$$\sigma_{\text{Total}}^{2} \sim \sigma_{\text{NINO ASIC + cables}}^{2} + \sigma_{\text{Beam spot}}^{2} + \sigma_{\text{MRPC}}^{2} + \sigma_{\text{TDC}}^{2} \sim \sqrt{(21^{2} + 14^{2} + \underline{11}^{2} + 30^{2})} \sim 41 \text{ ps}$$

• MRPC is contributing ~11ps !!!

Note: in real application one has to add also $\sigma_{\text{Track}} \& \sigma_{\text{to}}$

5/3/2010

New R&D effort: 24 MRPC gaps

C. Williams, talk in Orsay, 2009 and private discussion at CERN, 2010.

24-gap MRPC:

- 24 active gaps/MRPC
- Gap size: 160 μm
- ~14% of r.l.
- Pad readout
- Max. possible rate $\leq 1 \text{ kHz/cm}^2$

Aim for a resolution: ~10 ps \mathbf{O} What does one expect for d(TOF) ?: 0 $\sigma^2_{\text{NINO ASIC + cables}}$: 21 ps --> 5 ps • (faster risetime & mount directly on the MRPC) $\sigma^{2}_{1 \text{ cm beam spot}}$: 50 ps/ $\sqrt{12} \sim 1/4$ ps --> 5 ps • (read out both sides of a pad) $\sigma^2_{\rm MRPC}$: 1/1 ps --> 5 ps (go from 10 \sim 250µm-gaps to 24 \sim 160µm-gaps) σ^2_{TDC} : 30 ps --> 5 ps • (replace TDC with 4-channel oscilloscope with **10 GSa/s**) **Expect:** $\sigma^2_{\text{Total}} \sim \sqrt{(5^2 + 5^2 + 5^2 + 5^2)} \sim 10 \text{ ps}$

Note: in real application one has to add also $\sigma_{\text{Track}} \& \sigma_{\text{to}}$

New R&D effort: 24 MRPC gaps

C. Williams, talk in Orsay, 2009, and private discussion at CERN, 2010.

Test beam results: Tuning of operating point Test beam results: resolution/MRPC Efficiency [%] Time difference between MRPC1 and MRPC2 100 Entries / ps 90 12.5 KV 100 T10 test beam 0 efficiency mrpc1 [%] 80 efficiency mrpc2 [%] 70 80 $\sigma = 22.35 \text{ ps}$ 60 Time resolution [ps] 60 time resolution is 50 25 O Time resolution of mrpc 25 $22.35/\sqrt{2} = 15.8 \text{ ps}$ 40 20 20 40 30 15 15 20 20 10 10 10 5 5 0 -300 -200 -100 0 100 200 300 -0 0 Time_{MRPC1} - Time_{MRPC2} [ps] 10000 11000 12000 13000 14000

- MRPC contribution to the final resolution: <10ps !
- Present limiting factor: electronics
- Presently they use fast scopes for the electronics

STAR experiment at RHIC

tray upper sawtooths MRPCs

• The experiment is also using MRPC TOF detectors

5/3/2010

STAR MRPC TOF performance

MRPC efficiency & TOF resolution:

16.5

16.5

17

17

¹ P (GeV/c)

Voltage [kV]

17.5

17.5

6×2 cell MRPC (USTC 1.0.0)

15.5

15 15.5

14

14

14.5

14.5

10⁻¹

15

Beam test

16

16

8-gap MRPC gives a timing resolution of ~60 ps. \bullet

CBM experiment at FAIR

• They are developing MRPCs with multiple strip line readout (called MMRPC), to reduce the channel count.

MCP-PMT

- ATLAS & CMS forward detectors at LHC
- TOP counter at Super Belle
- Forward TOF detector at SuperB ?

Examples of MCP-PMT tubes used for TOF

HPK-6 (single pad):

Photek 210 & 240 (single pad):

Photonis 10 & 25 (64 pads):

HPK SL-10 (4 pads):

MCP-PMTs used in TOF tests

Data from Hamamatsu⁺, Burle/Photonis, Photek^{*}, and from K. Inami (Nagoya) ^a, J. Va'vra (SLAC) ^b, A.Lehman ^c, A.Brandt (Arlington) ^δ, A.Rozhnin (Fermilab) ^e

MCP-PMT	# of anodes	# of MCPs	MCP size	Hole [um]	QE	Photocathode	TTS	Rise time
							[he]	[he]
HPK 6	1	2	¢11mm	6	26	Multi-alkali	~11 +	< 150 +
HPK 10	1	2	φ25mm	10	26	Multi-alkali	< 35 ^a	< 200
HPK SL-10	4	2	22x22	10	24	Multi-alkali	< 30 ^a	< 200
BINP 8	1	2	¢18mm	8	18	Multi-alkali	< 27 °	< 200
Photonis 10	64	2	49x49	10	24	Bi-alkali	< 30 ^b	< 200
Photonis 25	64	2	49x49	25	24	Bi-alkali	< 50 ^b	< 250
Photek 110	1	1	φ10mm	3.2	30	Multi-alkali	?	~70 *
Photek 210	1	2	¢10mm	3.2	30	Multi-alkali	< 25 ^d , e	~81 *
Photek 210	1	2	¢10mm	6	30	Multi-alkali	?	~95 *
Photek 240	1	2	40mm	10	30	Multi-alkali	?	~180 *

HPK6 is R3809U-50-11X, HPK10 is R3809U-50-25X, SL-10 is R10754-00-L4 in Hamamatsu catalog

To get the best out of these tubes one may have to develop a new fast electronics

MCP-PMT Relative efficiency to Photonis XP2262B

C. Field, T. Hadig, D.W.G.S. Leith, G. Mazaheri, B. Ratcliff, J. Schwiening, J. Uher, and J. Va'vra, Nucl.Instr. & Meth., A553(2005)96-106

- Relative photon detection efficiency (PDE) to 2" dia. Photonis XP2262/B is only 50-60%. To claculate this efficiency all hits were used, including the tail hits => the "in-time hit" efficiency is smaller by 20-30% !!
- I do not have a similar plot for 10µm hole MCP unfortunatelly.

5/3/2010

Two detectors directly in the beam

Two **Planacons** (10 μm holes, 10mm long radiator) (J. Va'vra, A.Rozhnin, et al, Fermilab test, NIM A606(2009)404-410)

Two **Photek 240** (10 μm holes, window is radiator,) (M. Albrow, A .Rozhnin, E. Ramberg, to be published)

Two **Planacons** (25 µm holes, 6mm long radiator) (A.Rozhnin, E.Ramberg, J.Va'vra et al., Fermilab test, unpublished)

What electronics resolution do we need ?

1) Nagoya test: Electronics resolution of Becker&Hickl SPC-134 CFD/TAC/ADC

2) Fermilab tests: Electronics resolution of Ortec 9327CFD / 566TAC / 114ADC:

The Nagoya test in the beam

K. Inami, H. Kishimoto, Y. Enari, M. Nagamine, and T. Ohshima, "A 5 ps TOF-counter with MCP-PMT", Nucl. Instr. & Meth., A560(2006)303-308.

Vary the length

Beam test setup: two identical TOF detectors

- <u>Quartz radiator:</u> 10 mm dia. rod, coated with Al on its round sides, and Length: 40, 30, 20, 10 mm and no radiator (just a 3 mm quartz window).
- Npe ~ 20 for L = 3 mm, and Npe ~ 40-50 for L = 10 + 3 mm.
- The best resolution result was obtained for L = 10 + 3 mm.

Does one need ADC correction ?

1) High gain $(G \sim 2x10^6)$:

(K. Inami et al., NIM, A560(2006)303-308)

1100 (1000 900 800 (b) 100 120 140 ADC (ch/0.25pC)

No ADC correction necessary

2) Low gain (G~ $2x10^4$, N_{total} ~ $6x10^5$ el.):

(J. Va'vra et al., NIM A606(2009)404-410)

Need CFD & ADC correction to get good result

Not sensitive to single pe background However, one needs a thicker radiator

J. Va'vra, RICH 2010, Cassis, France

5/3/2010

Nagoya test: the best beam results so far

K. Inami, H. Kishimoto, Y. Enari, M. Nagamine, and T. Ohshima, "A 5 ps TOF-counter with MCP-PMT", Nucl. Instr. & Meth., A560(2006)303-308.

- Two identical HPK MCP-PMT R3809U-59-11 with 6 μm holes.
- MCP-PMT operated at a very high gain of ~2x10⁶.
- No amplifier to avoid saturation effects in CFD timing

Nagoya test: can a simple calculation explain data ?

My version of a simple model

 $\sigma_{\text{TOF}} \sim \sqrt{[\sigma_{\text{MCP-PMT}}^2 + \sigma_{\text{Radiator}}^2 + \sigma_{\text{Pad broadenibng}}^2 + \sigma_{\text{Electronics}}^2]} =$ $= \sqrt{[(\sigma_{\text{TTS}}/\sqrt{N_{\text{pe}}})^2 + (((L*1000\mu\text{m/cos}\theta_{\text{C}})/(300\mu\text{m/ps})/n_{\text{group}})/\sqrt{(12\text{Npe})})^2 + ((5*1000\mu\text{m/300}\mu\text{m/ps})/\sqrt{(12\text{Npe})})^2 + (4.1 \text{ ps})^2]}$ $= For L = 13 \text{ mm: } \sigma_{\text{TOF}} \sim \sqrt{[4.18^2 + 3.6^2 + 0.63^2 + 4.1^2]} \sim 6.9 \text{ ps}}$

• A simple model actually does work quite well.

Too soon to think about a pixilated TOF ?

J. Va'vra, "Forward PID", SuperB workshop, Orsay, Feb. 2009

SuperB-related based on the Planacon MCP-PMT:

- Low enough gain (2-3 x 10⁴) to be insensitive to single photoelectron background, i.e., detect only <u>charged tracks</u>.
- Radiator thick enough to produce N_{total} ~ 6-8 x 10⁵ electrons/track to get a sufficient S/N ratio for good timing. Radiator is made of Fused silica cubes with polished sides.
- Combine 4 pads into one to reduce a number of pixels.
- This detector, unfortunatelly, may not happen at SuperB as these MCP-PMTs are too expensive at present.

New MCP-PMT Development

H. Frisch et al., R&D effort of University of Chicago, Argonne Natl. lab, Berkely Space Scienec lab, Fermilab Natl. lab, etc.

• See talk of Ossy Siegmund for more details on this new R&D.

5/3/2010

CMS R&D: Q-bar

Mike Albrow et al., Fermilab, April 2010

Fermilab 120 GeV protons:

- In the final application at LHC, they will use two Qbar detectors, and therefore the final resolution is $\sigma_{\text{final}} \sim \sigma_{\text{One_detector}} / \sqrt{2} \sim 16.4 / \sqrt{2} \sim \underline{11.2 \text{ ps}}$. In fact, I am told by Mike Albrow, that they plan to add more detectors in line to reduce the error further.
- This is the 1-st real success of the entire ps-timing effort.
- The next challenge: aging and rate issues. 5/3/2010 J. Va'vra, RICH 2010, Cassis, France

TOP-like/DIRC-like TOF detectors for SuperB and Belle II factories

Note: all these devices are really DIRC in various form

Small TOP counterTOF counter effort in SuperBForward Disc DIRC at Panda

- When measuring of TOP & α_x is good enough to measure θ_c well ?
- Putting numbers into the above equation: $L_{path} = 2 \text{ m}$, $\sigma_{TTS} \sim 40 \text{ ps}$, $\sigma(n_g)/n_g \sim 0.013$ for Bialkali photocathode, $\sigma(TOP)/TOP \sim 0.0039$, and $\sigma(\alpha_x) \sim 0.005$, one obtains $\sigma_{\theta c} \sim 15$ mrads (constant for Lpath > 1.5 meters).
- <u>This is not good enough</u>. Therefore, one has to use: (a) use red-sensitive photocathodes, such as GaAsP, to reduce the chromatic error, (b) a UV filter to cut off low wavelengths, (c) add a mirror segmentation, which is a "cheap way" to do y-pixillization (measurement of α_v), (d) add dispersion limiting optics (Panda), etc.
- If θ_c is measured poorly, such detector is basically a TOF counter. 5/3/2010 J. Va'vra, RICH 2010, Cassis, France

TOP counter for forward region

K.Inami, ps-workshop, 2008, Lyon, France

5/3/2010

Panda Disc DIRC

K. Fohl, I. Brodski, M. Duren, A. Hayrapetyan, P. Koch, B. Krock, O. Merle, M. Sporleder and M. Zuhlsdorf, JINST, 2009

Panda experiment and Forward DIRC:

• The first DIRC-like detector to correct the chromatic error by an optical element.

SuperB DIRC-like TOF

L. Burmistrov, N. Arnaud, O. Bezshyyko, H. Dolinskaya, A.Perez, A. Stocchi, and J.Va'vra

- Forward PID represents ~5% of solid angle. Therefore it is appropriate that the cost scales similarly. Mass in front of LYSO calorimeter has to be < 15% X_o.
- Tuning of the variables with MC is under way.
- Goal: *σ* ~ 40-50ps/track

5/3/2010

SuperB DIRC-like TOF

L. Burmistrov, N. Arnaud, O. Bezshyyko, H. Dolinskaya, A.Perez, A. Stocchi, and J.Va'vra

$$\sigma_{\text{Total}} \sim \sqrt{\left[\sigma_{\text{Electronics}}^{2} + \left(\sigma_{\text{Chromatic}} / \sqrt{(\epsilon_{\text{Geometrical} \log *} N_{\text{pe}})^{2} + \left(\sigma_{\text{TTS}} / \sqrt{\epsilon *} N_{\text{pe}}\right)^{2} + \sigma_{\text{Track}}^{2} + \sigma_{\text{detector coupling to bar}}^{2} + \sigma_{\text{to}}^{2}\right]}$$

- electronics contribution ~ 5-10 ps (waveform sampling digitizer WaveCatcher) $\sigma_{\rm Electronics}$
- chromatic term = f (photon path length) $\sim 10-25$ (Geant 4) $\sigma_{\rm Chromatic}$
- transit time spread \sim 35-40 ps σ_{TTS}
- σ_{Track} timing error due to track length L_{path} (poor tracking in the forward direction) ~ 5-20 ps (Fast Sim) $\sigma_{\text{detector coupling to bar}}$ timing error due to detector coupling to the bar ~ 1-20 ps (Fast Sim)
- start time dominated by the SuperB crossing bunch length $\sim 15-20$ ps σ_{to}

MC simulation:

MC results:

- The total time resolution will be between <u>30-40 ps</u>
- <u>Npe > 5</u> photoelectrons at present, aiming for 10.

We had a "DIRC-like" TOF counter in the test beam:

- Obtained routinely $\sigma \sim 40-45$ ps
- But watch out for the systematic errors:

Time [min] 50

5/3/2010

J. Va'vra, RICH 2010, Cassis, France

Geiger mode APD (G-APD)

• Other names: SiPM, SiPMT, MGPD, MRS-APD, PSiPs, SPM, MPPC, ...

Beam tests with G-APD in Fermilab

A. Rozhnin et al., Fermilab

• <u>Timing start</u>: G-APD (Hamamatsu MPPC, radiator is fused silica, 3x3 mm² and 30 mm long, all surfaces polished)

<u>Timing stop</u>: Photek 240 (radiator is the MCP window, 9.6 mm thick).

- The MPPC time resolution is <15 ps assuming the Photek 240 time resolution is 7.7 ps. Small pulse height cuts and slewing correction applied.
- 120 GeV protons used for the test. Normal incidence.
- <u>Attention has to be paid to ΔT & ΔV stability</u>: 11.5ps/0.5°C & 6.2ps/10mV !!

Summary

- TRD technique clearly works very well as demonstrated at ATLAS.
- The "Cluster counting" technique might be tried in a real experiment such as SuperB. It is, however, electronics and data handling challenge.
- TOF technique progressed a lot due to new developments in (a) MRPCs, (b) MCP-PMTs and (c) G-APDs. It will progress significantly further in the next few years thanks to new experience at LHC (ALICE, forward pp-scattering at ATLAS and CMS), Super Belle (TOP counter) and SuperB (new FDIRC, and possibly forward TOF).
- However, the large scale application of MCP-PMTs and G-APD arrays will depend on their cost. One reason why the MRPCdetectors have developed so quickly is that they are cheap and easy to make.
- Therefore the new R&D on new ways of making MCP-PMTs, which is going on at the U. of Chicago, Argonne Natl. lab, and Berkeley Space Scienec lab, is a very important step.