The time-of-propagation (TOP) counter for Belle II

Kurtis Nishimura, University of Hawaii on behalf of the Belle II PID Upgrade Group 7th International Workshop on Ring Imaging Cherenkov Detectors May 6, 2010

Barrel PID at Belle II

- Belle II at Super KEKB will perform high precision tests of the Standard Model and searches for new physics:
 - Requires high efficiency, low fake rates in separation of K^{\pm}/π^{\pm} for momenta up to ~4 GeV/c.
 - For example, to distinguish between

$$-$$
 B \rightarrow ρ ($\pi\pi$) γ / B \rightarrow K* (K π) γ

- B $\rightarrow \pi\pi$ / B \rightarrow K π

- Primary requirements:
 - Increased performance relative to Belle PID.
 - Barrel region is extremely space constrained → must be compact.

Particle ID at the B Factories

→ Would like to improve performance over existing threshold aerogel + TOF system.

- Charged particles of same momentum but different mass (e.g., K^{\pm} and π^{\pm}) emit Cherenkov light at different angles.
- Detect the emitted photons in 2+ dimensions (x,y,t)
- BaBar DIRC as a model:

- Charged particles of same momentum but different mass (e.g., K^{\pm} and π^{\pm}) emit Cherenkov light at different angles.
- Detect the emitted photons in 2+ dimensions (x,y,t)

Left: Simulations w/ large (2 m) expansion volume, 2 GeV K/ π

- Charged particles of same momentum but different mass (e.g., K^{\pm} and π^{\pm}) emit Cherenkov light at different angles.
- Detect the emitted photons in 2+ dimensions (x,y,t)

- Charged particles of same momentum but different mass (e.g., K^{\pm} and π^{\pm}) emit Cherenkov light at different angles.
- Detect the emitted photons in 2+ dimensions (x,y,t)

Belle Before/After Upgrade

Time-of-Propagation (TOP) Counter

- e.g., NIM A, 494, 430-435 (2002)
- Work at bar end, measure x,t, not y → compact!

Chromatic Dispersion

- A range of photon energies is produced in radiator.
 - Each wavelength is emitted at different Cerenkov angle: $\cos heta =$
- Changing index of refraction changes group velocity for different wavelengths of light.

10

Chromatic Dispersion

- A range of photon energies is produced in radiator.
 - Each wavelength is emitted at different Cerenkov angle: $\cos heta =$
- Changing index of refraction changes group velocity for different wavelengths of light.

Focusing TOP (fTOP)

- Add focusing mirror and vertical pixelization.
 - Spreads wavelengths over more pixels.
- Chromatic dispersion:
 - Add a wavelength filter \rightarrow use part of spectrum where dispersion is not as severe, at cost of some photons. (Valid for any TOP concept, not just fTOP)
- Finite bar thickness:
 - Focusing mirror can reduce this for some tracks.

Adding imaging -> iTOP

- Starts with a single bar, single readout design of focusing TOP (including focusing mirror).
 - Adds a small quartz expansion volume.

 Asymmetric shape was chosen over a symmetric one to allow smaller gap to ECL.

Two Baseline Configurations

PMT Requirements & Options

- TOP counters require excellent single photon timing resolution: $\sigma_{TTS} \lesssim {\rm 50~ps}$
- Must work in 1.5T magnetic field → MCP-PMTs
- Devices considered:
 - Baseline photodetector:
 - Hamamatsu SL10
 - 10 μ m pore MCP
 - 4x4 pixels, each: (5.5 x 5.5) mm²
 - R&D ongoing to check/improve:
 - Timing: single photon σ_{TTS} ~30-40 ps
 - Lifetime: < 10% QE drop in ~3 Belle II years
 - − Efficiency: multi-alkali → super bi-alkali, \gtrsim 28% @ 400 nm
 - (More by K. Inami Friday!)
 - Backup option:
 - Photonis Planacon (10 μ m pore)

Simulation Studies

- Independent simulations:
 - Belle Geant3 + standalone code (Nagoya)
 - Geant4 (Hawaii)
 - Standalone code (Ljubljana)
- All utilize a ∆log(Likelihood) approach to determine particle classification.
 - PDFs are defined in x,y, and t
 - Geant-based versions take probability distribution functions (PDFs) from simulated events.
 - ➔ Extremely time consuming to generate the PDFs, but can include all the effects (scattering, ionization, delta-rays, etc.) that Geant can provide.
 - $\Delta \log(\text{Likelihood})$ in Ljubljana code utilizes analytical expressions for the likelihood functions.
 - → Much faster! (*More by M. Staric later today!*)
 - ➔ Working to integrate with full simulated data and improve performance.

Simulated Performance (Multi Alkali)

<u>1 bar type</u>

Sensitivity to Event Uncertainties

- Different geometries are sensitive to different event uncertainties.
- Examples:
 - Tracking uncertainty
 - One bar type is more affected by increases in angular uncertainties.
 - Event start time uncertainty
 - Two bar type is more affected by increases in start time uncertainty.
 - Example...

Simulated Performance (MA -> SBA)

Belle II Beam Background

Performance w/ Beam Backgrounds

Kaon efficiency, 1-bar

Kaon efficiency, 2-bar

Quartz Cherenkov Device Landscape

More sensitive to t_o uncertainties

Focusing TOP

No expansion
Mainly x,t
Focusing & coarse y to correct chromatic effects

TOP

•No expansion
•Only x,t
•No focusing →
chromatic degradation

Performance

Belle II Time-of-Propagation, RICH2010

Compactness

Waveform Sampling Electronics

Buffered Large Analog Bandwidth Recorder And Digitizer with Ordered Readout (LABRADOR)

BLAB1 Die floorplan: 128 x 512 samples Single channel 3mm x 2.8mm, TSMC 0.25um

→Varner et al., NIM A583, 447 (2007)

Electronics Performance

- First generation (BLAB1):
 - Single channel (no on-chip amplification)
 - Bench tested with pulser \rightarrow excellent $\sigma_{\Delta t}$:
 - 16 channels instrumented in fDIRC beam test:

- much lower power.
- \clubsuit Timing limited by σ_t of MA-PMT.
- Second generation (BLAB2):
 - Compact → ~450 chan. @ fDIRC cosmic test
- BLAB3 utilizes lessons learned... testing now.

→ We expect to be PMT limited for timing.

6.4 psRMS

4.71 time (ns)

BLAB

σ≈170ps

Two CH Timing

σ≈240ps

Integrated Readout (BLAB2 Example)

Fiberoptic readout for all modules... ...why?

Trigger Issues

Trigger – Simulated Performance

Using photon time information only, no spatial information:

w/ 0 background photons... RMS ~1.4 ns

w/ 4 background photons... RMS ~3.9 ns

➔ Optimization is ongoing. Adding spatial information could help (but costs more FPGA resources). This may already be enough...

Trigger – Simulated Performance

Belle I

Using photon time information only, no spatial information:

With 4 background photons & combining tracks... RMS ~2.2 ns

Structural Considerations

<u>Backward end – 1 bar option</u>

PMT & electronics access panel

Important features:

- •Both baseline designs are being studied structurally.
- •Integrated with existing barrel ECL support structure.
- Provides support for the drift chamber.
 Panels to allow access to PMTs and electronics.

Toward Full Module Test

Summary

- Belle II will utilize a time-of-propagation (TOP) counter for particle identification in the barrel region.
 - Compact device to accommodate strict space requirements.
 - Two baseline configurations (final decision expected soon):

- Simulated performance indicates improved performance, robustness to backgrounds. Some tradeoffs relative to expected event uncertainties (event start time, tracking, etc.)
- Beam test of full size bar with waveform-sampling readout electronics is planned for this fall.

BACKUP SLIDES

Electronics Specifications

Parameter	Value	Comment
Total electronics channels	8k	either 1-bar or 2-bar
Number of BLAB3 ASICs	1k	8 channels/ASIC
Number of channels/SRM	64	8 BLAB3 ASICs
Number of SRM	128	Subdetector Readout Modules
Bi-directional fiber links/SRM	1 + 1	DAQ/Trigger (see relevant Chapters)
Total DAQ/Trigger links	128	10% bandwidth at full luminosity
Number FINESSE	64	2 fiber links (COPPER limited)
Number COPPER	16	COPPER bus limited
Average size/event	4	kByte (2.5% occupancy)

Parameter	Value	Comment
Channels/BLAB3	8	die size constraint
Sampling speed	4	Giga-samples/second (GSa/s)
Samples/channel	32768	allows $\geq 5 \ \mu s L1$ trig latency
Amplifier gain	60	voltage $(3k\Omega \text{ TIA})$
Trigger channels	8	for hit matching/zero suppression
Effective resolution	≈ 9	bits $(12/10 \text{ bit logging})$
Sample convert window	64	samples (≈ 16 ns)
Readout granularity	1	sample, random access
Readout time	1+n*0.02	μ s to read <i>n</i> samples (same window)
Sustained L1 rate	30	kHz (multi-buffer)

Imaging? TOP

• Are we really imaging?

Example 2.5 GeV/c K/ π @ 90°, composites of 100 events.

 In actuality, we still rely mostly on timing, but expansion + larger image plane helps reduce ambiguities.