Astrophysics with the H.E.S.S. Cherenkov Telescopes

Petter Hofverberg

MPI-K Heidelberg On behalf of the H.E.S.S Collaboration

VHE Gamma-ray astronomy with Imaging Atmospheric Cherenkov Telescopes

Cherenkov light pool (2km)

Radius ~ 120m Thickness ~ ns Spectrum peak 300-350 nm ~100 photons/(m²*1TeV)

Observables

image intensity -> primary energy
image orientation -> arrival direction
image shape -> origin (photon, hadron)

Performance

Energy range: few GeV -> >100 TeV Large detection area Duty time <1000 h / year

From source hunting to astrophysics

Cangaroo, Magic, Veritas, **HESS**, Mark 6 Telescope, Milagro, Telescope Array, Whipple

VHE Gamma Sources

The H.E.S.S. Experiment

Energy threshold Energy resolution Field of view Angular resolution Sensitivity 100 GeV 20% ~ 5 deg <0.1deg 1 Crab in 30 sec

NA-PLANCK-INSTITUT BIR KERNPHYSIK

Key features

- Access to the inner Galaxy
- Large field of view with good off axis imaging
- Stereoscopy

Field of view, off axis performance

• Dish: Davies-Cotton design

- good off-axis imaging
- marginal rms time spread of ~1.4 ns
- focal length/diameter = 15/13 = 1.2
- Camera: Large field-of-view
 - 960 pixels (PMTs), each 0.16° FoV
 - Total FoV 5°

Off axis performance

Field of view, off axis performance

• Dish: Davies-Cotton design

- good off-axis imaging
- marginal rms time spread of ~1.4 ns
- f/d = 1.2

• Camera: Large field-of-view

- 960 pixels (PMTs), each 0.16° FoV
- Total FoV 5°

Well suited for:

✓ Extended sources✓ Surveys

γ- Ray

On a hardware level:

- ✓ Background suppression
- ✓ Dead time reduction
- ✓ Lower energy threshold

γ- Ray

On a hardware level:

Background suppression single muons night-sky background

hadron showers

✓ Dead time reduction

✓ Lower energy threshold

Isolated Muon

....

On analysis level:

- ✓ Angular resolution
- ✓ Energy resolution
- ✓ Background rejection
- ✓ Sensitivity

The H.E.S.S. Experiment - In full stereo mode since 2004

Recent physics highlights

- SN1006: A shell type SNR
- Detection of a Starburst galaxy in VHE g-rays
- The H.E.S.S. Galactic Survey

SN 1006

SN1006

Type 1a supernova Non-thermal X-ray emission observed from the rims

Suggests shock accelerated electrons > 100TeV

HESS observations

• Bipolar morphology, rim thickness compatible with PSF

• Morphology strongly correlated with nonthermal X-rays

Suggests a common origin

• Ambiguity between leptonic and hadronic acceleration scenarios

Shell type supernova remnants:

SN 1006

arXiv:1004.2124v1, accepted for publication in A&A

SN1006

Type 1a supernova Non-thermal X-ray emission observed from the rims

Suggests shock accelerated electrons > 100TeV

HESS observations

• Bipolar morphology, rim thickness compatible with PSF

• Morphology strongly correlated with nonthermal X-rays

Suggests a common origin

• Ambiguity between leptonic and hadronic acceleration scenarios

Shell type supernova remnants: SN 1006

Pure electron population

Electron+proton population

Fails to reproduce the slope of the VHE spectrum

Possibly to reproduce all multiwave data!

Lower energy data crucial!

Detection of the Starburst galaxy NGC253 in VHE gamma-rays

The starburst galaxy NGC253

Spiral galaxy at 2.6-3.9Mpc SNR rate in central 100pc ~0.03 SN/y Predicted gamma ray emitter Does not contain a significant active galactic nucleus!

The observations

Detected flux 0.3% of Crab, close to model predictions **Detection imples a very high density of CR:** EpNp(>1.3TeV)=6eV/cm³, >1000 x in our own galaxy

H.E.S.S. 2009, Science 326, 1080

A new class of gamma ray emitter, but faintest source detected yet!

H.E.S.S. as a survey instrument:

The initial TeV galactic plane survey (2004)

- Exposure ~95h + ~135h follow-up/dedicated
- -Discovered 14 Galactic sources of TeV radiation

The extended H.E.S.S. Galactic plane survey (2005-2009)

- A much deeper exposure: 1400+h , + dedicated observations
- A more uniform exposure
- Discovered a total of 56 Galactic sources of TeV radiation

Aharonian et al. 2005 Science, 307 Aharonian et al. 2006, ApJ, 636 Chavez et al. 2009, ICRC Proc.

H.E.S.S. as a survey instrument: A deeper, wider TeV survey

Significance [σ]

Source catalog:

http://www.mpi-hd.mpg.de/hfm/HESS/pages/home/sources/

H.E.S.S. as a survey instrument

"The H.E.S.S. Legacy Survey"

2010-2011

Increase the uniformity of sensitivity of the H.E.S.S.
 Galactic Plane Survey to enhance the legacy of the TeV survey dataset

- Goal: 1% sensitivity within 1° of the galactic plane
- Coverage out to 4° of the galactic plane

The H.E.S.S. Experiment: Upgrades

- H.E.S.S. I Mirror refurbishment
- H.E.S.S. Phase II

Mirror refurbishment

Average loss of reflectance per year: 4-5% Direct impact on energy threshold and sensitivity!

2 new mirror coatings are being tested

- 3-layer protective coating (SiO₂ , HfO₂ , SiO₂)
- dielectric coating (no Al)

Old mirror coating

• Al/SiO₂ (reflectance ~85%)

Already started

- CT3 finished two days ago
- One telescope every ~6 months

> 5% improvement in reflectivity than the currently used coating

BEFORE

AFTER: >20% higher reflectivity

HESS Phase II: Where to go next?

Goals

1) Improve the sensitivity in the current energy domain x2

- Starburst galaxies, radio galaxies, galaxy cluster
- 2) Lower energy threshold
 - Less absorption \rightarrow Can access more distant objects
 - Pulsars will be accessible
 - Test emission models in greater detail (hadronic/leptonic scenarious in SNR)
 - Overlap with Fermi!

 $E_{thr} \sim$ Ok, how?

Add a (much) larger telescope!

HESS Phase II – A fifth large telescope in the centre of the array

Biggest Cherenkov telescope ever built!

Mirror area: Energy threshold: Focal length: Weight: Reflector: FoV: 600 m² ≈20 GeV 36 m 500 tonnes Parabolic 3.2°

For the same energy, better definition of the shower image

HESSII Camera Electronics

New characteristics

- Lower energy threshold
- Larger collecting area

New demands Trigger rate of ~3kHz (10 x HESSI) -> Readout -> Data transmission (<4kHz) Extended dynamic range

HESSII Camera Electronics

New solutions

• A new ASIC chip for the analogue pipeline: SAM (Swift Analogue Memory):

	SAM (HESSII)	ARSO (HESSI)
Buffering	Matrix	Ring
Dynamic Range	1 pe → 6000 pe	1 pe → 1600 pe
Readout Time	1.6 µs	60 µs
Sampling Speed	2 GHz	1 GHz

Deadtime < 1% @ Trigger rate of 3kHz

• 2nd level trigger (under development)

SAM: developed for HESSII by SEDI-Saclay

H.E.S.S. II Trigger: Operating Modes

> HESS Phase I: 2 fold coincidence

≻ HESS Phase II

Mono Event

Stero Hybrid, Phase II

Stereo, Phase I

HESSII Status

- Work on steel structure stopped, contract with old company broken
- Tendering process ongoing, 2promising candidates
- Subsystems are ready to roll
- Hope to start integration in Namibia late 2011

In the mean time...
✓ More time to perfect the subsystems
✓ Identify and resolve problems that occur rarely
✓ Prepare for a smooth integration

Realistic long duration tracking tests in Heidelberg!

From source hunting to astrophysics

Ô

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

E

S

Thank you!

Petter Hofverberg On behalf of the H.E.S.S Collaboration

Shell type supernova remnants: SN 1006

Toy model for investigating VHE gamma origin

- One zone model
- Synchrotron, IC, Bremsstrahlung, π_0 decay

• Free parameters: power law index and exponential cutoff of particle population(s), magnetic field

Two Scenarious

Pure leptonic scenario
TeV γ from: IC scattering on CMB
Mixed leptonic/hadronic scenario
TeV γ from: IC scattering + π₀ decay

Pure leptonic scenario

Fails to reproduce the slope of the VHE spectrum

Shell type supernova remnants: SN 1006

Toy model for investigating VHE gamma origin

- One zone model
- Synchrotron, IC, Bremsstrahlung, π_0 decay

• Free parameters: power law index and exponential cutoff of particle population(s), magnetic field

Two Scenarious

Pure leptonic scenario
TeV γ from: IC scattering on CMB
Mixed leptonic/hadronic scenario
TeV γ from: IC scattering + π₀ decay

Mixed leptonic/hadronic

Possibly to reproduce all multiwave data!

H.E.S.S. as a survey instrument: A deeper, wider TeV survey

GeV—TeV spatial associations Significance [σ]