Pattern recognition for TOP counter

Marko Starič

:
Jožef Stefan Institute
Ljubljana

RICH 2010

Outline

- Introduction
- Extended likelihood method for PID with TOP
- TOP counter for Belle II: performance studies
- Conclusions

Time-of-propagation (TOP) counter

- example of ring images
- schematic view of a module

- principle of operation

f-TOP and $\mathrm{i}-\mathrm{TOP}$

- focusing TOP \longrightarrow chromatic error correction

- focusing TOP with expansion prism = imaging TOP

Extended Likelihood probability

For a given mass hypothesis $h=e, \mu, \pi, K, p$:

$$
\log \mathcal{L}_{h}=\sum_{i=1}^{N} \log \left(\frac{S_{h}\left(x_{i}, t_{i}\right)+B\left(x_{i}, t_{i}\right)}{N_{e}}\right)+\log P_{N}\left(N_{e}\right)
$$

- N... number of detected photons
- $N_{e}=N_{h}+N_{B} \ldots$ expected number of photons
- $S_{h}(x, t) \ldots$ signal distribution for mass hypothesis h
- $B(x, t) \ldots$ distribution of background photons
- $P_{N}\left(N_{e}\right)$... Poisson probability of mean N_{e} to obtain N photons

Distributions normalized as:

$$
\sum_{j=1}^{n_{c h}} \int_{0}^{t_{m}} S\left(x_{j}, t\right) d t=N_{h}, \quad \sum_{j=1}^{n_{c h}} \int_{0}^{t_{m}} B\left(x_{j}, t\right) d t=N_{B}
$$

Parametrization of signal distribution

$$
S_{h}\left(x_{j}, t\right)=\sum_{k=1}^{m_{j}} n_{k j} g\left(t-t_{k j} ; \sigma_{k j}\right)
$$

- $n_{k j}$... number of photons in the k-th peak
- $t_{k j}$... position of the k-th peak
- $\sigma_{k j} \ldots$ width of the k-th peak
- $g\left(t-t_{k j} ; \sigma_{k j}\right) \ldots$ normalized Gaussian

Signal distribution: analytical construction

Poster at RICH 2007
 NIM A 595 (2008) 252-255

- Problem: find analytical expressions for $n_{k j}, t_{k j}$ and $\sigma_{k j}$
- Functions of:
- track impact position $\left(x_{0}, z_{0}\right)$ and impact angles (θ, ϕ)
- Cerenkov angle θ_{c} for given mass hypothesis
- photon detection coordinate x_{j}
- Geometric view: intersection of Cerenkov cone with a plane
- well known, quadratic equations
- Total reflections:
- Imagine the detector plane divided into cells of a size of Q-bar transverse dimensions ($a \times b$)
- total reflections - the same as folding the detector plane at cell boundaries
- unfolded coordinate for k-th reflection: $x_{D}^{k j}=k a \pm x_{j}$

Solutions for $n_{k j}, t_{k j}$ and $\sigma_{k j}$

- Input:
- track impact position $\left(x_{0}, z_{0}\right)$ and impact angles (θ, ϕ)
- Cerenkov angle θ_{c} for given mass hypothesis
- photon detection coordinate $x_{j} \rightarrow x_{D}^{k j}, \quad k=0, \pm 1, \pm 2, \ldots$
- Solve for unknown Cerenkov azimuthal angle $\phi_{c}^{k j}$
- Knowing $\phi_{c}^{k j}$ the photon direction vector is fully determined
- The k-th peak position in channel j is:

$$
t_{k j}=\frac{z_{D}-z_{0}}{\left(\cos \theta \cos \theta_{c}-\sin \theta \sin \theta_{c} \cos \phi_{c}^{k j}\right)} \frac{n_{g}}{c_{0}}+t_{T O F}
$$

- Number of photons in the peak:

$$
n_{k j}=N_{0} \ell \sin ^{2} \theta_{c} \frac{\Delta \phi_{c}^{k j}}{2 \pi}
$$

Peak width $\sigma_{k j}$

- Contributions (summed in quadrature):
- photon emission point spread (parallax) $\rightarrow \sigma_{\ell}=\frac{d t_{k j}}{d \ell} \frac{\ell}{\sqrt{12}}$
- multiple scattering of particle in quartz $\rightarrow \sigma_{\text {scat }}=\frac{d t_{k j}}{d \theta_{c}} \theta_{0}(\ell / 2)$
- dispersion (chromatic) $\rightarrow \sigma_{\text {disp }}=\frac{d t_{k j}}{d e} \sigma_{e}$
- detection channel size $\rightarrow \sigma_{\text {ch }}=\frac{d t_{k j}}{d x_{j}} \frac{\Delta x_{j}}{\sqrt{12}}$
- transit time spread of PMT (TTS) $\rightarrow \sigma_{\text {TTS }}$
- Derivatives $\frac{d t_{k j}}{d \ell}, \frac{d t_{k j}}{d \theta_{c}}, \frac{d t_{k j}}{d e}$ and $\frac{d t_{k j}}{d x_{j}}$ calculated numerically

Comparison: simulated vs. analytic $S_{h}(x, t)$

Focusing TOP

- Focusing mirror: cylindrical or spherical
- Photon detector must be segmented also in y
- Cylindrical mirror with focusing in y easier to implement:
- $x-z$ projection (almost) not affected $\longrightarrow \phi_{c}^{k j}$ solved in the same way
- $t_{k j}$ and $y_{k j}$ obtained by ray-tracing
- both are functions of ℓ, x and $e \rightarrow$ linearize them:

$$
y=y_{0}+\frac{d y}{d \ell}\left(\ell-\ell_{0}\right)+\frac{d y}{d x}\left(x-x_{0}\right)+\frac{d y}{d e}\left(e-e_{0}\right)
$$

- loop over channels in y direction in unfolded detector plane and calculate mean photon energy (e) and r.m.s. (σ_{e}) for each channel
- use e to calculate t from linearized function
- Spherical mirror: "kink" also in $x-z$ projection
- $\phi_{c}^{k j}$ solved iteratively, starting with linear optics approximation
- the rest then the same as for cylindrical mirror

Expansion prism

- Some photons reflected at upper/lower surface
- obtain "kink" in $x-z$ projection
- $\phi_{c}^{k j}$ solved iteratively
- the rest then the same as for f-TOP

f-TOP with cylindrical mirror

all channels

one row of channels (out of 4)

f-TOP with spherical mirror

all channels

one row of channels (out of 4)

Reconstruction of Geant3 simulation

- analytical PDF
- PDF constructed with MC simulation (5000000 photons)

Kaon selection:
$\log \mathcal{L}_{\mathcal{K}}>\log \mathcal{L}_{\pi}$ efficiency

θ	MC PDF	anal.PDF
90°	97.9%	97.2%
60°	92.8%	86.6%

fake

θ	MC PDF	anal.PDF
90^{0}	0.5%	0.9%
60°	7.5%	11.9%

TOP counter for Belle II

- Two baseline designs:
- 1-bar option (focusing i-TOP)
- 2-bar option (f-TOP + TOP)
- bar dimensions: $44 \mathrm{~cm} \times 2 \mathrm{~cm} \times 270 \mathrm{~cm}$ (not fixed jet)
- 16 modules in ϕ at $R=1.2 \mathrm{~m}$
- each module: 2×16 MCP-PMT (SL-10, $4 \times 4 \mathrm{ch}$.)
- multi-alkali (super bi-alkali) PC

Some performance studies

Impact of multiple scattering and tracking errors

- 2-bar option, super bi-alkali PC, 25 ps T_{0} jitter
- Plots show K / π separation powers

+tracking err.

$\rightarrow 1 \sigma$
->2 σ
$\rightarrow 3 \sigma$
$->4 \sigma$

Some performance studies

1-bar vs. 2-bar option

- super bi-alkali PC, $25 \mathrm{ps} T_{0}$ jitter
- Plots show K / π separation powers

$B^{0} \rightarrow \pi^{+} \pi^{-}$		
	π effi	K fake
1-bar	94%	3%
2-bar	97%	3%

Some performance studies

Multi-alkali vs. super bi-alkali

- 2-bar option, 25 ps T_{0} jitter
- Plots show K / π separation powers

$B^{0} \rightarrow \pi^{+} \pi^{-}$		
	π effi	K fake
MA	95%	4%
SBA	97%	3%

Some performance studies

Impact of T_{0} jitter
(super bi-alkali PC)

$\rightarrow 3 \sigma \quad>4 \sigma$

$B^{0} \rightarrow \pi^{+} \pi^{-}$		
1-bar	π effi	K fake
25 ps	94%	3%
50 ps	92%	5%

Conclusions

- Extended likelihood method for particle identification with the TOP counter has been presented.
- The method is based on an analytical construction of likelihood function.
- The method is adopted to various types of TOP counter, including those with a focusing mirror and an expansion volume at the quartz bar exit window.
- Using this method and a Monte Carlo simulation the performance of the two baseline configurations designed for the Belle II detector has been discussed.

