Particle Identification for the PANDA detector

- Carsten Schwarz, ESSI for the PANDA Cherenkov group
- Overview
- Detector
- Barrel DIRC
- Endcap Disc DIRC
- Common developments

Overview FAIR Facility for Antiproton and Ion Research

GSI, Darmstadt

- heavy ion physics
- nuclear structure
- atomic and plasma physics
- cancer therapy

100 m

HESR

PANDA

FAIR: New facility

- heavy ion physics
- nuclear structure
- antiproton physics

Overview FAIR Facility for Antiproton and Ion Research

Beams now:

Z = 1 - 92(protons to uranium) up to 2 GeV/nucleon Beam cooling 100 m

HESR

PANDA

Beams in the future: Intensity: 100 - 1000 fold Species: Z = -1 - 92(anti-protons to uranium) Energies: up to 35 - 45 GeV/u Precision: beam cooling

Overview Physics topics

- Charmonium and open charm spectroscopy
 o.
 confinement
- Search for charmed hybrids and glueballs
 * Formation of color neutral object
- Modification of charmed mesons in nuclear matter

Restoration of chiral symmetry

- Hypernuclei
- Nucleon structure

PANDA Detector

Requirements

nearly 4π solid angle for PWA high rate capability: 2×10^7 s⁻¹ interactions (average) efficient event selection (triggerless DAQ) momentum resolution ~1% vertex info for D, K⁰_S, Λ (c τ = 317 µm for D[±]) good PID (γ , e, µ, π , K, p) photon detection 1 MeV – 10 GeV

PANDA Detector

PANDA Detector

PANDA PID Requirements:

Particle identification essential for PANDA Momentum range 200 MeV/c – 10 GeV/c Several methodes for PID needed

PID Processes:

Cherenkov radiation:

Radiators: quartz

Energy loss: below Cherenkov threshold

TPC or Straw Tubes

Time of flight

Challenge: no start detector, relative timing

Electromagnetic showers: EMC for e and $\boldsymbol{\gamma}$

Cherenkov detectors

Groups

- GSI, Dubna
 Barrel DIRC
- Giessen, Glasgow
 Endcap Disc DIRC
- Erlangen, Vienna MCP-PMT, G-APD

1m

antiproton

MEPhI/PULSAR SiPM

Barrel DIRC

Detection of Internally Reflected Cherenkov light

Barrel DIRC

PANDA Barrel DIRC, initial design similar to BaBar

96 Fused silica bars, 2.5m length Scaled: Water tank & 7000 PMTs

98% kaon efficiency

2% pion miss id.

Current design of Barrel DIRC

More compact, faster, focusing optics 96 radiator bars, synthetic fused silica 17mm (T) × 33mm (W) × 2500mm (L)

Focusing optics: lens system

Compact photon detector: array of Burle Planacon MCP-PMT

total 7000-10000 channels.

Fast photon detection: MCP-PMT fast TDC/Time Over Threshold electronics

 \rightarrow 100-200 ps timing.

Still investigating several design options:

mirror focusing, radiator plates, photon detection outside magnetic field

G-APD

3D-DIRC

Time of Propagation measurement better than 100-200 ps allows to partially correct dispersion for high and low momenta $\rightarrow x,y,t \rightarrow 3D-DIRC$

Simulations in PandaRoot

Poster, Dipanwita Dutta

Design is being optimized

Fast reconstruction algorithm being developed

Endcap Dirc – Focusing Lightguide Option

Endcap Disc DIRC - resolution

Cherenkov Radiation Dispersion

Focussing lightguide

first demonstrator setup to verify proper optics of workshop machined Focusing Light Guides

Poster, Klaus Föhl Poster, Adrian Schmidt

Endap DIRC – Time Of Propagation option

single photon resolution $\sigma_t \sim 30-50$ ps required missing start detector: relative timing between photons

180 270

Hybrid DIRC

combines strength of focussing option with ToP option Helps to reject photons from knock on electrons by angular measurement.

The photon detection device

C.Schwarz, RICH 2010 Cassis

Talk, Albert Lehmann

Common developments for endcap and barrel Radiator Radiation hardness Poster, Matthias Hoek Shape, Surface quality Poster, Jochen Schwiening

Photon detectors

Multi-Channel-Plate MCPs

G-APD

Test experiments

Poster, Jochen Schwiening

Poster, Euan Cowie

Poster, Klaus Föhl

Talk, Albert Lehmann

Poster, Johann Marton

Start counter Proton beam 2 GeV

CBM setups

.

TOP option setup

PERMIT

Focusing option setup

Barrel DIRC setup

Readout electronics

Radiator focussing light guide read out by APDs in Geigermode

Small Prototype for Test

da

Паι

Focusing option: measuring photon yield of radiator

Focussing Disc DIRC - Calibration

Multi-parameter fit required to describe observed signal in the PMT. Shown are contributions from different numbers of observed photo-electrons.

Barrel DIRC: Ring Imaging

move MCP PMTs by 15mm each → does the ring stay in place? (in box coordinates)

It does.

Summary

- PANDA includes two DIRCs for PID
 - Barrel DIRC similar to BaBar DIRC
 - Endcap Disk DIRC, several designs
- R&D activities
 - radiator quality, focusing optics
 - photon detectors, [readout electronics]
 - fast timing, chromatic correction
 - simulation, reconstruction...
- Test experiments for small scale prototypes
- Start of FAIR construction: 2011
- Planned start of PANDA installation in 2016
- Opportunity for 1-2 more years of exciting DIRC detector R&D

Barrel DIRC Imaging

